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A B S T R A C T   

Our study uses the GARCH-EVT-copula model to develop out-of-sample forecasts for diverse asset classes, 
including a green asset. To construct optimal portfolios, we apply four different portfolio allocation techniques: 
equal weighting, minimum variance, global minimum variance (GMV), and certainty equivalence tangency 
(CET) criteria. The results demonstrate that the GMV portfolio outperforms other portfolios in risk measures. 
Further, backtesting evidence shows that the portfolio containing a green asset performs better than the 
benchmark for short horizons. The results have implications for fund managers and policymakers since green 
asset provides valuable diversification benefits and further the cause of sustainable development.   

1. Introduction 

Energy plays nowadays a pivotal and strategic role in shaping the 
future of humanity and safeguarding the health of the ecosystem (Tan 
et al., 2021). Population growth and increased energy consumption have 
presented an enormous challenge for the environment and the devel
opment of new pathways for the expansion of the energy grid while 
addressing global climate change and energy consumption demands. 
Energy and ecological balance are complex issues that warrant world
wide concern, as they encompass the combined challenges of meeting 
global energy demands while mitigating health risks caused by the 
massive use of fossil fuels for industrial and nonindustrial reasons (Tiba 
and Omri, 2017). 

Renewable energy has the potential to become a valuable and 
indispensable resource, greatly benefiting human life and well-being in 
this critical transitional phase (Brosemer et al., 2020). Green energy can 
substantially impact biodiversity, particularly the hyper diversity of the 
tropics, with their fast-rising human population and economies, even 

though >176 countries aspire to transition to clean energy sources 
(Edelman et al., 2014; REN21, 2017). Environmentally friendly tech
nologies, such as green energy, urgently require the strategic interven
tion of scientific research and financial support. Based on this nexus, 
generating resources for green finance to improve the environment 
should be considered a fundamental requirement for sustainable 
development. 

Green finance is a crucial source of funding for renewable energy 
projects aimed at reducing the adverse impact of carbon emissions on 
both humans and the environment. It reflects the goal of sustainability in 
financial decision-making with a focus on environmental and sustain
ability considerations, including the implementation of the United Na
tions Social Development Goals (SDGs) (Madaleno et al., 2022). 
Considering the critical importance of green finance, the literature ex
amines the transmission of risk between green assets and traditional 
financial assets, portfolio diversification through the inclusion of green 
assets, the role of green assets as risk-mitigating instruments, and the 
potential of green assets as safe-haven assets (Akhtaruzzaman et al., 
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2022a; Del Gaudio et al., 2022; El Ghoul et al., 2023; Le et al., 2021; 
Kuang, 2021; Martiradonna et al., 2023; Naqvi et al., 2022; Reboredo, 
2018; Reboredo et al., 2020; Reboredo and Ugolini, 2018; Yousaf et al., 
2022). However, despite the growing literature on green assets as 
portfolio diversifiers and risk-mitigating instruments, few studies have 
focused on the out-of-sample forecasting of green asset portfolio allo
cation. Our study fills the void in the literature by introducing a GARCH- 
EVT-copula model to conduct out-of-sample forecasting for portfolios 
containing green and traditional assets. In the GARCH-EVT-copula 
model, we have taken care of investors’ concern about downside risks 
than about upside gains by applying Value at Risk and Conditional Value 
at Risk,1 and extreme movements in asset prices by incorporating 
extreme value theory (EVT)2 and a copula method to address extreme 
value dependence in a multivariate framework (Wang et al., 2010). 

Our research contributes to the literature in several ways. First, we 
look into the diversification benefits of using a clean energy equity index 
(i.e., a proxy for a green asset) in a well-diversified portfolio. We have 
applied four different portfolio allocation techniques: an equally 
weighted portfolio, a certainty equivalence tangency (CET) portfolio, 
and minimum-variance and global minimum variance (GMV) portfolios. 
Our portfolio allocation techniques are based on Markowitz’s (1952, 
1999) theory that considers expected mean return and risk for portfolio 
diversification. The four distinct portfolio allocation techniques provide 
the novelty in our results. Following Wang et al. (2010) and Saham
khadam et al. (2018), we use the GARCH-EVT-copula model to forecast 
returns and volatilities. Unlike previous works, we employ simulated 
returns for the equally weighted, minimum-variance, CET, and GMV 
portfolios. Our study is a novel attempt to incorporate a clean energy 
index in portfolio formation to understand how its inclusion may offer 
diversification benefits and reduce portfolio risk. Adding the clean en
ergy index to the portfolio reduces risk significantly in almost all models. 
The results have practical implications for the fund management in
dustry, providing insights into how adding clean or green assets into the 
portfolio substantially reduces risk. The efficient frontier constructed 
from the GMV-CVaR model dominates traditional mean-variance 
models. Further, we argue that the CVaR is a robust measure to cap
ture the tail risk in the portfolio. Therefore, combined with copulas, risk 
management based on CVaR yields better insights about the risk 
embedded in a portfolio, thus extending the literature in a new field of 
study. 

Our paper uses the GARCH-EVT-copula model to develop out-of- 
sample forecasting allocation for the green asset and diverse asset 

classes such as gold, crude oil, the US dollar, and three-month Treasury 
bill. We have some interesting results. First, the results provide evidence 
that the GMV portfolio outperforms equal-weighted, minimum-variance 
and CET portfolios in risk measures. Second, backtesting evidence shows 
that the clean energy fund portfolio performs better than the benchmark 
for short horizons. Finally, our results are robust to alternative specifi
cations, sub-sample analysis, and inclusion of additional traditional 
financial assets. The results have implications for fund managers and 
policymakers and help in better implementing the Social Development 
Goals (SDGs). 

The remainder of the paper is structured as follows. Section 2 reviews 
the relevant literature. Section 3 outlines the methodology. Section 4 
provides a detailed description of the data. Section 5 presents the results 
of the analysis. Section 6 discusses the robustness of the findings. Section 
7 concludes. 

2. Literature review 

VaR and CVaR have frequently been used to measure downside risk 
(Gencay and Selçuk, 2004), mainly to estimate the potential loss at a 
specified confidence level. Further, GARCH models are used when 
financial asset returns exhibit a fat-tailed distribution (De Bondt and 
Thaler, 1985; Müller et al., 1997; Müller et al., 1998; Harmantzis et al., 
2006; Crato and Ruiz, 2012). The Extreme Value Theory (EVT) is better 
suited for extreme value forecasting when combined with GARCH 
models (Bali, 2003; Gençay and Selçuk, 2006; Ergen, 2015). This notion 
has found support in the literature (e.g., McNeil and Frey, 2000; Chan 
and Gray, 2006; Bhattacharyya and Ritolia, 2008; Bhattacharyya et al., 
2009; Deng et al., 2011; Zhao et al., 2011). Moreover, combined 
GARCH-EVT-copula models are better suited for measuring downside 
risk. 

In addition, in financial markets, the prices of assets tend to affect 
each other (Engle and Kroner, 1995; Christoffersen et al., 2014; Bane
rjee, 2021), which offers flexibility in modelling the dependency struc
tures using different frameworks to match other asset classes. As 
proposed by Sklar (1959), copulas have demonstrated their practicality 
in assessing correlations among assets. For example, Wang et al. (2010) 
found that the Student’s t copula yields better estimates than Gaussian 
and Clayton copulas (Huang et al., 2009). Employing a combination of 
dynamic conditional correlation and EVT, Berger (2013) reported that 
the risk of a portfolio was better estimated against VaR with a static 
copula. Koliai (2016) used a semiparametric GARCH-EVT-copula model 
to stress-test portfolios and found that using an array of models affected 
the results of the stress scenarios. Using Kakouris and Rustem’s (2014) 
framework, Han et al. (2017) reported that the worst-case CVaR model 
performs better for out-of-sample tests. Deng et al. (2011) used the 
copula-GARCH-EVT-CVaR model to optimise Chinese stock portfolios. 
They reported that the Student’s t copula enhanced portfolio perfor
mance more than other copulas. Further, Alexander and Baptista (2004) 
compared the performance of risk measures using VaR and CVaR in 
portfolio optimisation and found that CVaR is more efficient than VaR as 
a risk management tool. 

In contrast, Alexander et al. (2006) analysed the CVaR minimisation 
problem regarding derivative portfolios. Yu et al. (2009) studied three 
Chinese stock indices as part of a portfolio by introducing a variance 
gamma copula. They demonstrated that a standard Gaussian copula 
could not capture asset returns’ excess skewness and kurtosis and that 
the variance gamma is a viable alternative. 

Several competing copula models have been introduced and tested to 
forecast VaR and CVaR, including a regular vine, a canonical vine, and a 
drawable vine copula. Zhang et al. (2014) reported that a drawable vine 
copula is a better alternative to other vine copulas for forecasting CVaR. 
Bhatti and Nguyen (2012) applied conditional EVT and time-varying 
copulas to model tail dependency. They showed that the EVT–copula 
combination is critical to analyse tail dependence, which is vital to 
portfolio allocation. 

1 Generally, investors show greater concern about downside risks than about 
upside gains. To accommodate such asymmetry in risk, different risk measures 
were developed, such as lower semi variance, value at risk (VaR), and condi
tional VaR (CVaR). Among these risk measures, the most common is CVaR (see 
Rockafellar and Uryasev, 2000). CVaR provides a measure of the potential 
losses beyond a given threshold at a given instant in time, particularly when 
applied to non-normal asymmetric data, thereby emphasising the assessment of 
downside risk CVaR is advantageous for risk diagnosis because it is a coherent 
measure that considers the size and probability of loss, compared to VaR (Chen 
et al., 2012). CVaR has become the popular choice for portfolio risk assessment 
and optimisation (Akhtaruzzaman et al., 2022a,b; Kolm et al., 2014; Thampa
nya et al., 2020).  

2 The characteristics of VaR and CVaR capture rare events in the tails of 
distributions with low probabilities. At the same time, EVT directly addresses 
tails and is superior in estimating and forecasting risk. However, care must be 
exercised since the assumption of a Gaussian distribution for the returns series 
does not fit the EVT framework. We applied the generalised autoregressive 
conditional heteroscedasticity (GARCH) process to measure volatility following 
Huynh et al. (2022), McNeil and Frey (2000), and Frey and McNeil (2002). We 
use EVT for the innovation terms instead of the return series from the GARCH 
model. GARCH-EVT models marginal distributions, while extreme value cop
ulas capture the multivariate dependence appropriate for non-Gaussian and 
nonlinear distributions (Jondeau et al., 2007; Patton, 2009). 
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The GARCH-EVT-copula model is primarily used for forecasting or 
analysing downside risk, although several studies have also explored its 
application in risk modelling, portfolio allocation, and backtesting. Low 
et al. (2013) used a Clayton canonical vine copula to test portfolio 
performance conditional upon minimising the CVaR. They reported that 
the models are efficient and appropriate for coping with higher numbers 
of assets in a portfolio. Cui et al. (2023) reinforced similar results by 
studying the cryptocurrency market and showed that CVaR outperforms 
the traditional portfolio-constructing techniques. The literature review 
reveals a void in the literature examining the impact of an alternative 
asset like green assets and its diversification benefits using copula-based 
VaR and CVaR models, even though past studies looked into the diver
sification benefits in other asset classes (Fonseca and Rustem, 2012; 
Karmakar and Paul, 2019; Topaloglou et al., 2020). In this paper, we 
extend the literature by examining the diversification benefits of a clean 
energy fund using copula-based VaR and CVaR models. 

3. Methodology 

This section discusses the GARCH-EVT-copula approach and in
troduces some copula models. It also presents the maximum likelihood 
estimation (MLE) and portfolio risk analysis techniques. 

3.1. Tail behaviour 

The tail behaviour of asset returns is modelled using EVT since EVT 
can be adapted to capturing extreme events. We use the peak over the 
threshold to compute extreme values since it was found suitable for 
financial time series when it is combined with standard GARCH (1,1) 
models. The error terms of the returns (X = (x1……xn)) are iid. The 
excess distribution F (x), representing the probability that the vector of 
errors exceeds a given level, say, u, is fitted by a generalised Pareto 
distribution (GPD) to adapt the maximum likelihood approach for the tail 
estimates. The distribution is represented as 

F (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

NuL

N

{

1 + ξLuL − z
βL

}− 1/ξL

z < uL

∅(z), uL < z < uR

1 −
NuR

N

{

1 + ξRuR − z
βR

}− 1
ξR

z > uR

(1)  

where ξ, β, uL, and uR are the scale, shape, and lower and upper 
thresholds, respectively (Coles et al., 2001; De Haan et al., 2006; 
Embrechts et al., 2013a, 2013b). Further, a GARCH (1,1) framework is 
utilised, and then extreme value theory (EVT) is applied to the vector X 
(McNeil and Frey, 2000; McNeil et al., 2015). 

The assumption that the conditional variance following a GARCH 
(1,1) model is based on past literature (see Kim and Jung, 2016; Pirca
labu et al., 2017; Sahamkhadam et al., 2018; Banerjee et al., 2020; Zhi 
et al., 2021). The return and GARCH (1,1) can be modelled as 

rt = μt + εt (2)  

where εt = zt
̅̅̅̅
ht

√
, while zt ≈ (i.i.d.); basically, zt is the standardised 

residuals and ht is the conditional variance of εt . Further ht is presented 
as 

ht = ω+αε2
t− 1 + βh2

t− 1 (3)  

where ω > 0, and the volatility parameters are imposed with the 
following restrictions (α ≥ 0, β ≥ 0, and α+ β < 1). 

3.2. The copula function and models 

According to Sklar (1959), for an n-dimensional distribution with 
continuous margins F 1,F 2………….F n a n-dimensional copula exists 

as 

F (x1….xn) = C(F 1(x1) ,…..F n(xn) ) (4)  

where C is the copula that is distinctively established in [0, 1]n for F by 

C(ε1, ε2,……..εn) = F
(
F

− 1(ε1) ,F
− 1(ε2)……. ,F − 1(εn)

)
(5)  

for all εi ∈ [0,1], i = 1, 2,…, n, and F − 1 is the inverse cumulative dis
tribution (icd) of a standard Gaussian.Further, the density functions of 
F and C are 

f (x1,……..…xn) = c(F 1(x1)………..F n(xn) )
∏n

i=1
fi(xi) (6)  

c(u1,………,un) =
f
(
F

− 1
1 (u1) ,……….,F − 1

n (un)
)

∏n

i=1
fi
(
F

− 1
i (ui)

)
(7)  

where fi and F − 1
i are the marginal densities and the functional quantile 

margins- While the density of the Gaussian copula is presented as 

c(u;R) =
1

|R|1

/

2
e−

u′(R′− I)u
2 (8)  

where the correlation matrix (R) inferred by, ui = F (xi), and identity 
matrix (I). The corresponding density of the Student’s t copula with 
shape parameter τ is 

c(u;R, τ) =
Γ
( τ+n

2

) (
Γ
( τ

2

) )n
(1 + τ− 1u′R′u)− (

τ+n
2 )

|R|1

/

2
(
Γ
( τ+n

2

) )nΓ
( τ

2

)∏n

i=1

(

1 +
u2

t

τ

)− (τ+1
2 )

(9)  

where ui = t− 1
τ (F (xi; τ) ) and t− 1

τ is the quantile function in the density 
function (Ghalanos, 2015; Kim and Jung, 2016). 

We further show the estimation procedure for each copula. Let the 
standardised multivariate normal version be given as ϕ∑, with 

∑
t 

(correlation matrix). The Gaussian copula can be written as 

CGaussian(ε1, ε2,……….εn) = ϕ∑
(
ϕ− 1(ε1) ,ϕ− 1(ε2)………. ,ϕ− 1(εn)

)
(10)  

where ϕ− 1 is the icd function. From Eq. (1), we know that the marginal 
distribution is F (z). Based on the historical values of (ε1…………ε1), we 
obtain 

ut = (u1, u2……………un) = (F 1(z1)………..F n(zn) ) (11)  

where ξt = ϕ− 1(u1) and ϕ− 1(u2)………., ϕ− 1(un). Thus, we obtain 
CGaussian(ut) = ϕ∑ (ξt), and, using MLE, we estimate 

∑
.

We introduce the Student’s t copula to capture the fat tail property 
since it is better adapted to capturing extreme events than the Gaussian 
copula. Let tυ,

∑ be the standardised multivariate version with 
∑

as the 

correlation matrix and υ the number of degrees of freedom. Then the t 
copula can be expressed as 

Ct(ε1, ε2,……….εn) = tυ,
∑

(
tυ
− 1(ε1) , tυ

− 1(ε2)………. , tυ
− 1(εn)

)
(12)  

where tυ
− 1 is the i Student’s t icd function. From Eq. (1), we know that 

the marginal distribution is F (z). Based on the historical values of 
(ε1…………εn), we obtain ut = (u1, u2……………un) =

(F 1(z1)………..F n(zn) ). We then have ςt = tυ
− 1(u1), tυ

− 1(u2)……….,

tυ
− 1(un.)

Thus, we obtain Ct(ut) = tυ,
∑ (ςt), and, using MLE, we estimate the 

matrix 
∑

.
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3.3. MLE 

The copula consists of multiple integrals in uj ∈ [0,1], ∀j (Eq. (4)): 

C
(
u1,u2,…, un,

)

=

∫ uj

0
…

∫ un

0

∂nC
(
z1,…,zn

)

∂z1,…, ∂zn
dz1,…, dzn  

=

∫ uj

0
…

∫ un

0
c(z1,…, zn)dz1,…, dzn (13) 

The copula density in the interior (u1, …., un)T ∈] 0, 1[n is defined as 

c(u1,…, un) =
∂nC(u1,…, un)

∂u1,…….∂un
(14) 

The parameter of copula, which is a generic vector Ω represented as 
Eq. (4) in the multivariate form as: 

∀z ∈ Rn : F (z1, z2,…, zn) = (C(F 1(z1),F 2(z2),…,F n(zn) |Ω)

= C(u1, u2,…, un|Ω) (15) 

By differentiating the copula, we obtain the density function: 

C
(

(u1, u2,…, un|Ω) =
∂nC(u1,…, un)

∂u1,…….∂un

)

(16) 

Eq. (15) on differentiation and using Eq. (16) obtains the density 
functions: 

∀z ∈ Rn :
∂n

F (z1z2…………….zn)

∂z1,…∂zn
= f (z1,…, zn)

=
∂nC(F 1(z1) ,F 2(z2) ,…,F n(zn)Ω

∂z1,…, ∂zn

= C(F 1(z1),F 2(z2),…,F n(zn)Ω )
∏n

j=1
f1zj (17)  

where fj denotes the derivative of F j with respect to zj; fj is the jth 
density function. Further, following Sklar (1959), the log-likelihood is 
yielded by Eq. (17) as: 

l(z1, z2,…, zn) =
∑n

i=1
log(c(F 1(zi1) ,F 1(zi2) ,…,F d(zin)Ω ) )

∏n

j=1
fizij

=
∑n

i=1

[
log(c(F 1(zi1) ,F 2(zi2) ,…,F d(zid)Ω ) ) + log

(
f1zij

)) ]

(18)  

3.4. Portfolio analysis 

Markowitz’s (1952, 1999) theory considers the expected mean re
turn and risk important for portfolio diversification. However, based on 
the classical framework, the literature has explored improving the 
portfolio allocation, starting from the naïve allocation–based equi- 
proportional allotment (DeMiguel et al., 2009) to the models sug
gested by Sharpe (1963, 1994) and Merton (1980). This paper uses 
different portfolio allocations to understand portfolio risk metrics, 
where a clean energy fund is a portfolio’s core component. We use four 
different allocation techniques, and the details of each of them are 
provided in the following. 

First, for an n-dimensional portfolio with asset returns rt =
(
r1,….., rn

)
and with asset weights as returns wt =

(
w1,…..,wn

)
and 

∑

the covariance matrix, the portfolio return and risk are measured by 
wT

t rt and wT
t
∑

wt , respectively. For the case of the equal-weighted 
portfolio, we impose wt =

( 1
n,…, 1

n
)
, that is, equal weights to all the as

sets under consideration. Second, the certainty equivalence tangency 
(CET) with the imposition of maximisation of the Sharpe (1963) ratio 
could be written as 

Maximisewt

wT
t rt

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
wT

t
∑

wt
√

subject to 
{

wT
t 1 = 1 for all (1, 2,…, n) (19) 

wt ≥ 0 only for long positions} 
Third, we use the optimisation technique proposed by Merton 

(1980). The global minimum variance (GMV) minimises the variance 
instead of maximising the expected return. The GMV model can be 
expressed as 

Minimisewt

wT
t rt

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
wT

t
∑

wt
√

subject to 
{

wT
t 1 = 1 for all (1, 2,…, n) (20)  

where wt ≥ 0 only for long positions} 
Finally, prior literature has used downside risk as a yardstick for 

optimality in portfolio allocation. For example, the risk measure (VaR) is 
combined with Markowitz’s portfolio, to get optimality in mean–VaR 
portfolio (Consigli, 2002). However, the modification to VaR to mini
mise losses beyond the VaR led to the development of the CVaR (Xu 
et al., 2016). The integration form of CVaR (see Rockafellar and Urya
sev, 2000) is as follows: 

Minimisewt,α f (wt, β) = α+
1

q(1 − β)
×

∑q

k=1

[
− wT

t rt − α
]+

subject to 
{

wT
t 1 = 1 for all (1, 2…..n) (21)  

wt ≥ 0 only for long positions  

μ(wt) ≤ − R}

3.5. Algorithm 

We define the parameters in this section: L is the window length, t0 is 
the initiation of iterations, T is the interval length, and K is the number 
of samples for each iteration [t0 + 1, T]. Using a rolling window view, 
steps 1 through 8, as explained below, are replicated for each time point 
[t0 + 1, T] during the iteration. Initial observations are required for one- 
step-ahead out-of-sample forecasting at t0 + 1, which is [t0 − L + 1, t0], 
and followed by [t0 − L + 2, t0 + 1]. Initially, t1 is equal to t0. The entire 
algorithm can be explained as follows:  

i. Eqs. (2) and (3) are used to estimate the GARCH (1,1) parameters 
with MLE, and the standardised residuals are then obtained: x̂j =

(x̂1, x̂2 ,…, x̂n) for x̂j ≈ i.i.d.∀j (1,2,…, n), where 

t ∈ [t0 − L+ 1, t0] (22)    

ii. The standardised residuals estimated from step (i) comprise a vector 
x̂t , which is further used to calculate the upper and lower tails and 
centre of the Gaussian kernel distribution as the GPD in Eq. (1): 

v̂j =
̂F k
(

x̂j
)
, t ∈ [t0 − L+ 1, t0], j ∈ [1, n],where ̂vt ∼ U(0, 1) (23)    

iii. Sklar’s theorem is applied as in Eq. (4), and estimated uniforms v̂j 

are inserted, following step (ii). The parameter Ω is approximate 
using the MLE provided in Eq. (18) for the Gaussian (Eq. (11)) 
and Student’s t (Eq. (12)), with Ω = Σ: 
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F̂ (v̂1, v̂2,…, v̂n) = Ĉ (F̂ 1 (v̂1 ), F̂ 2 (v̂2 ),…, ̂F n(v̂2) |Ω̂) (24)    

iv. We generate K uniform random numbers (w1, w2, …, wi), ∀i = 1, 
…, K, for individual series j = 1, …, n, which we use to estimate 
the multivariate copula distribution in step (iii) to get K uniforms 
with a dependency structure: 

ûj = (û1 , û2,…,ûn ) =
̂C(F̂ 1(w1), F̂ 2 (w2),…, F̂ n(wn) |Ω̂) , ûj ∼ U(01)

(25)    

v. To recalculate the new standardised residuals portfolio optimisation, 
the simulated uniform random numbers of step (iv) are fed into the 
inverse to derive the marginal distribution functions of step (iii): 

Ẑ = [ẑi ] = (ẑ1 , ẑ2 ,…, ẑn) =
( ̂

F
− 1
1 (û1 ) ,

̂
F

− 1
2 (û2) ,…,

̂
F

− 1
n (ûn)

)
(26)    

vi. The residual vectors Ẑ from step (v) are replaced in the GARCH 
framework to generate the forecasting model. We estimate K one- 
step forecasts for time instant t = t0 + 1: 

r̂i
t =

(
r̂1

t,1 , r̂2
t,2 ,…, r̂k

t,n

)
(27)    

vii. The forecasted returns from step (vi) are used for optimisation is 
described in Section 3.4 to obtain the optimal weights (wt) for the 
CET, min-variance, GMV and equally weighted portfolios. 

The optimal weights and real asset returns are used for calculating 
the portfolio return Rt = wT

t rt. 

4. Data description 

The sample used in our study for portfolio formation consists of the 
daily prices of the First Trust NASDAQ Clean Edge Green Energy Index 
Fund (QCLN),3 gold, crude oil, the US dollar, and a three-month Trea
sury bill. Following the literature, we use QCLN as a proxy for a green 
asset (Rizvi et al., 2021). We also use the daily prices of the S&P 500 
index against which to test the portfolio’s performance. The data are 
collected from Refinitiv Datastream. The sample starts on 1 December 
2006, coinciding with the introduction of the clean energy index, and 
ends on 8 March 2022. Following Sahamkhadam et al. (2018) and 
Karmakar and Paul (2019), we use a rolling window for the prediction. 

Table 1 presents descriptive statistics. Crude oil appears to have the 
highest mean return, while the T-bill has the lowest mean return during 
the sample period. Since T-bill is a risk-free asset, the T-bill has the 
lowest risk as measured by standard deviation. Skewness deviates from 
zero, implying a skewed distribution of returns. The skewed distribution 
in the return of financial assets is widespread in the literature (see 

Akhtaruzzaman et al., 2021a; Akhtaruzzaman et al., 2021b; Akhtar
uzzaman et al., 2022b; Akhtaruzzaman et al., 2022c; Banerjee et al., 
2022; Siddique et al., 2021). The kurtosis value is more than three in all 
the series, implying that return series have fat tails and deviate from the 
normal distribution. Jarque–Bera’s test confirms the non-normality for 
all the series. 

5. Empirical results 

In the first step, we calibrate the volatility model parameters over the 
in-sample period. We estimate the model for each combination of 
different assets (i.e., the Clean Edge Green Energy Index Fund, gold, 
crude oil, the US dollar, and three-month Treasury bill) in the portfolios. 
Table 2 reports GARCH (1,1) parameters that are significant at appro
priate levels, indicating that innovation terms follow Student’s t-distri
bution. We extract the filtered residuals individually using the GARCH 
(1,1) model to construct the marginals and utilise the cumulative density 
function for the interior and the GPD to fit the upper and lower tails, as 
shown in Eq. (1). The benefit of this methodology is that the iid notion 
for EVT is least likely to be violated. We then use a GARCH-EVT model to 
define the marginal distribution for the innovations under the assump
tion that the conditional distribution of the residuals of the GARCH (1,1) 
model follows the Student’s t distribution. 

Further fitting the GPD requires defining a threshold value (Wang 
et al., 2010). We set the threshold at 10% and estimate the copula pa
rameters. We apply two different copula forms, the Gaussian and Stu
dent’s t, following Wang et al. (2010). Once the copula function is fitted, 
the distribution of the residuals for any marginals or dependency 
structure is generated (step (iv) in the algorithm). We then simulate 
10,000 uniform random numbers and feed them into the inverse func
tion of the marginals for each series (step (v)). Once the returns are 
obtained, we estimate the optimal weight for the portfolios using four 
different methods: equal weighting, minimum-variance, CET, and the 
GMV. Following a rolling window approach, we reiterate the out-of- 
sample period procedure and backtest the portfolio’s performance 
against the benchmark. 

Following the procedure above, we estimate the VaR and CVaR for 
the simulated innovations obtained from following the Gaussian and 
then the Student’s t copula forms, keeping the window fixed at the 99th 
percentile. The estimation procedure is rolled over to compute the next 
interval’s VaR and CVaR. Figs. 1 and 2 present the tail probabilities and 
profile likelihood curves for the equally weighted and GMV portfolio 
estimators. The results for the four distinct weight allocations for the 
GARCH-EVT-Gaussian and GARCH-EVT-Student’s t copulas are pre
sented in Table 3. The GARCH-EVT-Student’s t copula model performs 

Table 1 
Descriptive statistics.   

Mean Std. Dev. Skewness Kurtosis Jarque-Bera 

Green asset 0.00031 0.02129 − 0.47040 5.84230 5811*** 
T-bill 0.00003 0.00006 3.74778 18.65866 67102*** 
Gold 0.00029 0.01098 − 0.47222 6.28564 6705*** 
Crude oil 0.00035 0.02758 0.59681 20.44847 69630*** 
US Dollar 0.00004 0.00468 − 0.06434 2.79459 1299***  

*** Denotes the statistical significance at the 1% level. 

Table 2 
Results of GARCH (1,1) Estimation.   

ω α β 

Green asset 0.0335*** 0.0916*** 0.9047*** 
T-Bill 0.0020*** 0.0954*** 0.8737*** 
Gold 0.0063*** 0.0346*** 0.9623*** 
Crude oil 0.0725*** 0.0896*** 0.9013*** 
Dollar 0.0006*** 0.0381*** 0.9591*** 

Notes: The return and GARCH (1,1) can be modelled as 
rt = μt + εt (2).   

where εt = zt
̅̅̅̅
ht

√
, while zt ≈ (i.i.d.); zt is the standardised residuals and ht is the 

conditional variance of εt . Further ht is presented as 
ht = ω+αε2

t− 1 + βh2
t− 1 (3a)   

where the parameter restrictions are ω > 0, α ≥ 0, β ≥ 0, and α+ β < 1. 
*** Denotes the statistical significance at the 1% level.  3 Several studies used QCLN as a green asset (see Miralles-Quirós and Mir

alles-Quirós, 2019; Naqvi et al., 2022) 
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better than the GARCH-EVT-Gaussian copula at the 99th percentile, 
supporting the findings of Sahamkhadam et al. (2018) and Wang et al. 
(2010). The GMV model has the lowest VaR and CVaR at the 99th 
percentile, indicating the lowest portfolio risk among the four models. 
Hence, the GMV model outperforms equal-weighted, min-variance and 
CET portfolios in downside risk measures. 

Our results are consistent with those of Stoyanov et al. (2013), who 
investigated the response of the CVaR to the tail’s thickness, and with 
those of Karmakar and Paul (2019), who find that the component 
GARCH-EVT-Copula model predicts downside risks more accurately 
than other models. As the findings of Stoyanov et al. (2013), we show 
that CVaR is less responsive to small differences in the tail index. 
Further, the results corroborate the scope of improvement over the 

minimum-variance portfolio. The results show that there is space to 
improve the CVaR of the minimum-variance portfolio as the minimum- 
variance portfolio CVaR may not be the least, as witnessed in the GMV 
portfolio CVaR values. As shown by Karmakar and Paul (2019), we find 
that the GARCH-EVT-Student’s t copula model performs better than 
other models in predicting downside risk measures. 

Backtesting ensures the model’s robustness when the data are heavy- 
tailed. When portfolio managers closely monitor prices and frequently 
rebalance their portfolios, non-Gaussian data becomes problematic. 
Hence, it requires sophisticated techniques to handle non-Gaussian data 
to yield an efficient portfolio. However, when the frequency of reba
lancing is increased, the marginal benefits of using complex modelling 
diminish as asymmetry and non-normality decrease, making 

Fig. 1. The tail distribution and the profile likelihood curve for an equally weighted portfolio. 
The first (second) graph presents the estimated tail probabilities of VaR (CVaR) at the 99% confidence interval. The tail distribution is for an equally 
weighted portfolio. 

Fig. 2. The tail distribution and the profile likelihood curve for a Global Minimum Variance (GMV) portfolio. 
The first (second) graph presents the estimated tail probabilities of VaR (CVaR) at the 99% confidence interval. The tail distribution is for a GMV portfolio. 

Table 3 
Portfolio risk calculated based on different apportionment techniques.  

Model Distribution Equally weighted Min-Variance GMV CET 

P Q ES P Q ES P Q ES P Q ES 

GARCH-EVT-Copula VaR Gaussian 99% 3.0152 3.5645 99% 0.9251 1.2349 99% 0.5862 0.7852 99% 2.1355 3.0694 
GARCH-EVT-Copula CVaR Gaussian 99% 3.1507 3.9728 99% 1.1051 1.5193 99% 0.7156 0.9746 99% 3.5230 4.9205 
GARCH-EVT-Copula VaR Student’s t 99% 3.0512 3.9802 99% 1.1892 1.2436 99% 0.6313 0.8194 99% 1.8179 2.4629 
GARCH-EVT-Copula CVaR Student’s t 99% 3.1367 4.0311 99% 1.2752 1.5792 99% 0.6376 0.8210 99% 2.8486 3.5297 

The VaR and CVaR are estimated post modelling the dependence structure using GARCH-EVT-Copula model. P, Q, and ES denote percentile, quantile threshold 
potential loss, and the expected shortfall, respectively. 
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investments in sophisticated computations less attractive. However, the 
literature has challenged the traditional outlook towards risk using VaR 
in the current environment (Dionne et al., 2009; Dionne et al., 2015). 
Hence, to examine the rebalancing strategies, we modify the de Melo 
Mendes and Marques (2012) model to varying frequencies and target 
risk tolerances, with one, three, and six months and one year. We used a 
12-month rolling window strategy with monthly intervals. Backtesting 
of the portfolio considered the performance, including the clean energy 
fund and its robust performance compared to the S&P 500 benchmark 
index. Portfolio optimisation is pursued on all the different methods. 
Table 4 presents the results from the GMV model. The results demon
strate that the GMV portfolio outperforms the S&P500 benchmark index 
for the short horizons. These results support the findings of de Melo 
Mendes and Marques (2012) that the marginal benefit of portfolio 
rebalancing is best reflected when the rebalancing is conducted once 
after three months but within six months period to avail better portfolio 
return against the benchmark. 

Fig. 3 provides the weights recommendation and rebalance from the 
GMV model over the sample period while Fig. 4 shows the drawdown 
risk of the portfolio against the benchmark. The results show that the 
portfolio constructed from the GMV model has less drawdown risk than 
that of the benchmark. The results provide newer insights into the 
benefits of portfolio diversification using clean energy funds and risk- 
mitigating properties. The results may excite the fund management in
dustry and portfolio managers. The inclusion of green assets in the 
portfolio creates opportunities for better performance and potential 
gains for the large financial institution with risk mitigation, hence 
demanding the exploration of a newer asset class for eventual gains as 
measured by the CVaR model. 

6. Robustness 

To check the robustness of our results, we applied alternative spec
ifications, a sub-sample analysis, and inclusion of additional diverse 
assets in the portfolio. First, we tested all the models using the dynamic 
quantile (DQ) test of Engle and Manganelli (2004), following Chen et al. 
(2012), against the conditional coverage (CC) of Christoffersen (1998) 
and unconditional coverage (UC) of Kupiec (1995). We performed Engle 
and Manganelli’s (2004) DQ test with four lags (q = 4) for this paper. 
However, we ran the test for q = 1, 2, and 3 and found minimal sensi
tivity to the selection of q. The test results support our earlier results at a 
1% significance level (DQ test statistics = 39.9676, p-value = 0.0000), 
providing additional validity to our backtesting results. Second, we 
divided the sample into pre-COVID–19 (1 December 2006–30 December 
2019) and COVID–19 (1 January–31 March 2020) periods to check 
whether the results differ in tranquil and turmoil periods.4 The results 
for the sub-sample analysis remained qualitatively similar, and the 
portfolio containing a green asset during the COVID–19 period aided in 
better performance (See Appendix Table A1). Third, we have extended 
the portfolio by adding a real estate index and Dow Jones Industrial 
Average (DJIA) index to check the robustness. The addition of the newer 

assets into the portfolio has not changed the dynamics of the results (see 
Appendix Table A2 for the details). 

7. Conclusion 

Our study uses four optimisation processes, namely, equally 
weighted, minimum-variance, GMV, and CET to optimise our portfolios. 
We aim to provide guidance to portfolio managers on when to imple
ment the robust tail and dependence models. Our findings indicate that 
portfolios utilising the GARCH-EVT-Student’s t-copula-CVaR model 
perform better than those using the VaR model. Thus, the results 
incentivise fund managers to review and rebalance portfolios over pe
riods. Portfolio managers could be incentivised to employ a GARCH- 
EVT-copula-CVaR model better to understand portfolio formation and 
its risk–return characteristics. In addition, the robustness tests validate 
that the empirical findings are robust to alternative specifications, 
subsample analysis, and the addition of assets to the portfolio. Our 
findings show that the inclusion of clean energy funds in portfolios is 
beneficial for diversification. As a result of the low or negative corre
lation between the clean energy index and other asset classes, clean 
energy asset offers shelter against price oscillations in these markets. 
The results also indicate that combining the clean energy index with 
other asset classes can benefit active investors who actively trade in the 
short term instead of passive investors who typically invest for the long 
term. Finally, our findings should also be of interest to policymakers. 
Given the notable growth of sustainable finance to achieve climate 
change goals, clean energy funds go a long way towards achieving the 
goals of clean and green energy. Hence, the intervention of policymakers 
can aid in further accelerating the pace of development. Furthermore, 
the accruing diversification benefits of clean energy funds can bolster 
the confidence of policymakers to scale up the market for clean energy 
funds to achieve the dualistic goal of commitment to the environment 
without sacrificing financial or economic growth. Our results promote 
policies supporting the development of this market. 

Our research reveals a wide range of risk management possibilities 
when addressing portfolio allocation with a variety of clean energy 
funds, as well as its risk measurement. This incorporates a combination 
of using expected shortfall (ES) as a complementary measure for VaR or 
a modified approach of using copulas with ES to revisit risk measure
ment techniques in portfolio risk management. Future research can be 
extended to include diverse asset classes to optimise portfolios. For 
example, researchers can study the use of gray energy instead of green 
energy in portfolios. In addition, it would be interesting to see if future 
research examines the net performance of portfolios using modified ES 
models or algorithmic techniques to broaden the area. 
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Appendix A. Appendices  

Table 4 
Net performance of the portfolio against the benchmark index.   

1-month 3-month 6-month 1-year 

Portfolio 2.64 4.47 6.11 7.30 
Benchmark 0.88 2.70 8.00 11.33 

The portfolio and benchmark (S&P500 index) returns are expressed in per
centages. The performance is evaluated based on the rolling window estimates 
for the GMV portfolio. 

4 Following Albuquerque et al. (2020), we have considered the Quarter 1 of 2020 as the COVID–19 period. 
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Table A1: Net performance of the portfolio against the benchmark index during pre-COVID–19 and the COVID–19 period   

1-month 3-month 6-month 1-year 

Panel A: Pre-COVID–19 period (1 December 2006–30 December 2019) 
Portfolio 2.42 4.65 6.43 7.42 
Benchmark 0.77 2.28 6.61 9.27 
Panel B: COVID–19 period (1 January–31 March 2020) 
Portfolio 2.78 3.86 5.71 6.56 
Benchmark − 5.25% − 0.24% 4.94% 13.94% 

The portfolio and benchmark (S&P500 index) returns are expressed in percentages. The performance is evaluated based on the 
rolling window estimates. We used a 12-month rolling window strategy with monthly intervals.  

Table A2: Net performance of the portfolio against the benchmark index.   

1-month 3-month 6-month 1-year 

Portfolio 2. 32 4.16 6.27 7.38 
Benchmark 0.88 2.70 8.00 11.33 

The portfolio and benchmark (S&P500 index) returns are expressed in percentages. The performance is evaluated 
based on the rolling window estimates. We used a 12-month rolling window strategy with monthly intervals. We 
have added a real estate index and DJIA to the portfolio.  

Fig. 3. Weights recommendation and rebalance for the portfolio. 
Weights Recommendation graph shows the smoothed recommended weights every month for the next month’s investment. The weights rebalance graph shows to 
which amount the weights were rebalanced using the GMV model. Red, green, pink, black and blue lines represent green assets, gold, crude oil, T-bill, and US Dollar 
index, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. The backtest plot portfolio vs benchmark. 
Drawdowns graph shows the drawdowns of the opti
mised portfolio using the GMV model at the end of 
each month in comparison to the benchmark. Red and 
blue lines represent the optimised portfolio and 
S&P500 benchmark, respectively. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   
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Fig. A1: Correlation heat map. 
The figure represents the correlation heat map for Clean Energy, Gold, Crude Oil, T-bill and US dollar returns.   

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eneco.2023.106831. 
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