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28Current methods of balance assessment in the clinical environment are often subjective, time-consuming
29and lack clinical relevance for non-ambulatory older adults. The objective of this study was to develop a
30novel method of balance assessment that utilizes data collected using the Microsoft Kinect 2 to create a
31Berg Balance Scale score, which is completely determined by statistical methods rather than by human
32evaluators. 74 older adults, both healthy and balance impaired, were recruited for this trial. All partici-
33pants completed the Berg Balance Scale (BBS) which was scored independently by trained physical ther-
34apists. Participants then completed the items of the ‘‘Modified Berg Balance Scale” in front of the
35Microsoft Kinect camera. Kinematic data collected during this measurement was used to train a feed-
36forward neural network that was used to assign a Berg Balance Scale score. The neural network model
37estimated the clinician-assigned BBS score to within a median of 0.93 points for the participants in our
38sample population (range: 0.02–5.69). Using low-cost depth sensing camera technology and a clinical
39protocol that takes less than 5 min to complete in both ambulatory and non-ambulatory older adults,
40the method outlined in this manuscript can accurately predict a participant’s BBS score and thereby iden-
41tify whether they are deemed a high fall risk or not. If implemented correctly, this could enable fall pre-
42vention services to be deployed in a timely fashion using low-cost, accessible technology, resulting in
43improved safety of older adults.
44� 2019 Published by Elsevier Ltd.
45

46

47

48 1. Introduction

49 In 2012, older adults in the US were treated for an estimated
50 1.76 million falls in the emergency room (Burns et al., 2016). Falls
51 are the leading cause of fatal injury, can increase hospital stays and
52 readmissions, and are an important factor affecting morbidity,
53 mortality, and general independence among older adults (Perell
54 et al., 2001). The cost of falls in older adults in the US is high. In
55 2015, the direct medical costs of fatal falls for people aged 65 years
56 and over totalled $637.5 million (USD), and $31.3 billion (USD) was
57 spent on injuries following non-fatal falls (Burns et al., 2016).

58Given the risk and cost of falls and fall-related injuries, the assess-
59ment of balance and identification of fall risk should be a critical
60part of routine clinical care for older adults (Xu et al., 2018).
61Indeed, risk assessment and stratification initiatives may be able
62to decrease the incidence of falls in older adults, but often require
63clinical visits that are costly and logistically difficult for both clin-
64icians and patients.
65The Berg Balance Scale (BBS) is a commonly used measure of
66balance within the clinical setting (Berg et al., 1995). However,
67the BBS has demonstrated floor and ceiling effects in the past
68(Blum and Korner-Bitensky, 2008), and has limited application in
69non-ambulatory individuals given most components of the test
70require the individual to be standing. We previously proposed
71the modified BBS (MBBS) as an assessment of seated balance for
72non-ambulatory people, which may enable balance to be safely
73assessed without the need for supervision (Dehbandi et al.,
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74 2017). The BBS is also a time-consuming assessment (15–20 min),
75 whereas the MBBS can be completed in 5–6 min, which may be
76 particularly advantageous given clinical consults are time limited.
77 Computerised posturography is a more sensitive measure but
78 typically requires expensive equipment (e.g. force platforms) and
79 trained staff to administer the test and interpret the data collected.
80 Furthermore, the set-up, calibration and data collection are often
81 time-consuming, which might limit its clinical applicability. There
82 are several low-cost, automated, electronic devices that are widely
83 available and have the capacity to measure gait and balance, but
84 until recently, their capacity to sensitively and reliably quantify
85 human motor behaviour has not been established. A comprehen-
86 sive automated kinematic analysis might offer an innovative solu-
87 tion to the current risk landscape that is the measurement and
88 interpretation of balance in the clinical setting.
89 The Microsoft Kinect 2 (MK2, Microsoft Corporation, Redmond,
90 WA, USA) is a combined high-definition (HD) video camera and
91 active infrared (IR) camera with a depth sensor designed for 3-
92 dimensional (3D) body tracking. It accurately records the move-
93 ments of the head, trunk and limbs in 3D space by tracking the dis-
94 placement of 25 inferred anatomical landmarks; or ‘‘centroids”.
95 This technology has widespread application in assessing balance
96 and gait control. It has been shown to accurately assess static
97 (Clark et al., 2015) and dynamic (Eltoukhy et al., 2017) balance,
98 and gait (Mentiplay et al., 2015), including multiple components
99 of the timed-up-and-go (Vernon et al., 2015).

100 When collected under appropriate conditions, data from the
101 MK2 can be paired with machine learning algorithms to sensitively
102 identify clinically relevant information. Our previous work demon-
103 strated that data collected using the MK2 can be used to discrimi-
104 nate between three distinct states of postural stability in 12
105 healthy adults performing a modified version of the MBBS
106 (Dehbandi et al., 2017). Taken together, previous work with the
107 MK2 suggests that it could offer a novel approach to identifying
108 individuals with impaired balance. In addition, its low-cost, acces-
109 sibility and customizability make it, and similar technologies, of
110 relevance to the telemedicine and rehabilitation communities.
111 The aim of this study was to evaluate the capability of the MK2
112 to predict the BBS score of older adults with varying levels of pos-
113 tural stability from a few simple, seated movements performed in
114 front of the camera. The research makes progress towards a brief,
115 accurate measure of balance that could be applied both within
116 and away from the clinical setting. This could alleviate time-
117 pressures placed on clinicians/therapists and enhance the robust-
118 ness of the clinical assessment of balance, and thereby reduce
119 the risk of falling.

120 2. Methods

121 2.1. Participants

122 Participants were recruited from the Burke Rehabilitation
123 Hospital and were included in the study if they were over the
124 age of 18 years, were able to safely sit in an upright position unsup-
125 ported, could understand and follow verbal commands, and were
126 able to provide informed consent. The participants involved in
127 the study were recruited from a pool of older adults from the Burke
128 Rehabilitation Hospital. This group of participants included stroke
129 survivors (<6 months post-stroke), older adults living with a range
130 of chronic conditions and healthy older adults involved in the
131 wraparound social services provided by the hospital (gym, tai chi
132 classes, aerobic exercise classes). Each participant provided written
133 informed consent prior to their enrolment in the study, which was
134 approved by the Burke Rehabilitation Hospital Committee for
135 Human Rights in Research (BRC-509).

1362.2. Data collection

137All participants completed a BBS assessment, which was con-
138ducted by a trained clinician to provide each participant with a
139BBS score. The clinical assessors were not required to interact with
140the technology other than to start and stop the data recording at
141the beginning and end of the data collection period respectively.
142Some participants completed two BBS assessments as part of their
143care, and in these instances the average BBS score was used in the
144analysis. All participants then completed the MBBS; a series of six
145separate balance tasks, each involving a simple movement per-
146formed in a seated position (Dehbandi et al., 2017).
147Participant kinematics were captured at 30 Hz using the MK2,
148which was positioned 2.7 m in front of the participant. These
149recordings provided the positions of 25 anatomical landmarks in
1503D space over time. These landmarks, identified as ‘centroids’, cor-
151responded to the ’spine base’, ’mid-spine’, ’spine top’, ’neck’, ‘head’,
152’left shoulder’, ’left elbow’, ’left wrist’, ’left hand’, ‘left thumb’, ‘left
153fingertip’, ’right shoulder’, ’right elbow’, ’right wrist’, ’right hand’,
154‘right thumb’, ‘right fingertip’, ’left hip’, ’left knee’, ’left ankle’, ‘left
155foot’, ’right hip’, ’right knee’, ’right ankle’ and ‘right foot’.

1562.3. Data analysis

157The goal of this data analysis was to build a model to discrimi-
158nate between individuals at risk of falls from those not at risk from
159falls using only MK2 recordings of the participants performing the
160MBBS. Previous analyses have shown that the centroids of the
161spinal axis contribute the most information on the stability of par-
162ticipants performing the MBBS (Dehbandi et al., 2017). Therefore,
163to minimize the dimensionality of the model, we selected two of
164these centroids (‘head’ and ‘mid-spine’) as this was the minimum
165number of centroids required as inputs to our model. The head
166centroid was chosen because it provided the most motion of the
167centroids in the spinal axis, and the mid-spine centroid was chosen
168as it provides the closest approximation of the participant’s center
169of mass and it is sufficiently distant from the head to provide a
170good contrast to the head motion data; and thereby contribute
171the most information to our model. As centroid position in the ver-
172tical direction conveys the least information about a seated partic-
173ipant’s balance, we selected the positional data pertaining to the
174medial-lateral and anterior-posterior directions for use in our
175model. Finally, a previous regression analysis of the data generated
176from each of the six tasks in the MBBS determined that tasks five
177and six generated the most useful information for estimating a par-
178ticipant’s total BBS. We therefore restricted our analysis to data
179from tasks five and six. The instructions for these tasks were as
180follows:
181Task 5: Pick up an object from the floor with your left hand, and
182return to sit upright, unsupported. Lean over to place the object
183back on the floor. Repeat using the right hand. End in an upright
184seated position.
185Task 6: Start with arms crossed, sitting unsupported. Raise one
186arm 90� out from your side. Hold for 10 s, then return to the start
187position for 10 s. Repeat with the other arm.
188This meant our analysis was limited to time-series data repre-
189senting two dimensions of physical space, from two centroids
190within the upper body, and from two of the six tasks of the MBBS.
191To estimate total BBS scores from the MK2 data we used a feed-
192forward neural network model; a type of machine learning algo-
193rithm. The configurable model was hand-written in C# and used
194back propagation of errorswith a steepest descent learningmethod.
195Inputs to the model included the variance/covariance of each time-
196series as determined by the unadjusted root mean square standard
197deviation (r) of the centroid position data (r2

Head_X, r2
Head_Z,

198r2
Mid-spine_X, r2

Mid-spine_Z, r2
Head_X-Head_Z, r2

Head_X-Mid-spine_X,
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199 r2
Head_X-Mid-spine_Z, r2

Head_Z-Mid-spine_X, r2
Head_Z-Mid-spine_Z, and

200 r2
Mid-spine_X-Mid-spine_Z; where x = medial-lateral direction, y =

201 superior-inferior direction and z = anterior-posterior direction) for
202 MBBS tasks five and six for each participant. In addition, the BBS
203 scoreswere included as the variable to be estimated from the centroid
204 position data. The total number of input nodes in the neural network
205 was therefore 21. The model also included two layers of 11 hidden
206 nodes per layer, and one output node corresponding to the estimated
207 total BBS scores.

208 3. Results

209 A total of 74 participants (35 female) were recruited for this
210 study. Participants were primarily older adults with an average
211 age of 73.1 years (46–95). Participants included 59 individuals
212 with chronic disease (i.e. cardiovascular disease, musculoskeletal
213 injury, neurological conditions), of which 23 were experiencing
214 multi-morbidity. In addition to this, 15 otherwise healthy older
215 adults were recruited into the study. No adverse events were
216 reported.
217 In order to perform our intended analysis, it was necessary to
218 sort our data into ‘‘training” (data that is used to develop a classi-
219 fication algorithm) and ‘‘testing” (data that is used test the accu-
220 racy of the classification algorithm developed with the training
221 set) datasets. We collected data from 74 study participants, and
222 our initial approach was to create training and testing datasets
223 by sorting participants by their BBS score, and then assigning
224 odd numbered participants to the training dataset and even num-
225 bered participants to the testing dataset. However, due to software
226 errors that occurred during data collection that were only discov-
227 ered post-hoc, three participants were found to have incomplete
228 datasets, and were thus considered ineligible to be part of the
229 training dataset. Furthermore, a linear regression model approach
230 determined that five additional participants were outliers due to
231 variance in Kinect centroid motion during some of the tasks that
232 was two standard deviations or greater than the population data-
233 sets. This sort of variation likely occurred due to poor skeletal
234 tracking performance of the Kinect camera during task perfor-
235 mance in these participants. Inclusion of these outliers in the
236 Training dataset would have reduced the fit of the model to the
237 training dataset. They were subsequently excluded from the train-
238 ing dataset. Thus, data from 31 participants were included in the
239 Training set and data from the remaining 43 participants (includ-
240 ing those with incomplete data and those identified as outliers)
241 were then included in the Testing dataset.
242 The training dataset included participants with BBS scores
243 between 18 and 56, while test dataset included participants with
244 BBS scores between 21 and 56, with no participants common to
245 both datasets. Using the training dataset to populate the input
246 nodes, the neural network was initiated in a random state and con-
247 tinued training until the mean squared error of the output (esti-
248 mated BBS scores) was less than a threshold of 1 � 10�6, which
249 corresponded to approximately 1.5 million iterations. The resul-
250 tant model weightings were recorded, and this iterative process
251 was repeated a total of 100 times. The mean model weightings
252 across these 100 repetitions were then used to predict the BBS
253 scores of the test dataset.
254 The results of the neural network analysis are shown in Table 1.
255 These results reveal that the neural network model outlined in the
256 methods was able to estimate the clinician assigned BBS score to
257 within a median of 0.93 points for the participants in our sample
258 population (range: 0.02–5.69). Moreover, using a threshold of
259 <40 to stratify participants as either high fall risk or moderate-
260 low fall risk (Shumway-Cook et al., 1997), our model was able to
261 correctly classify all except for one of the participants in the test

262dataset, with the one misclassified participant receiving a score
263of exactly 40 from the clinician assessment.

2644. Discussion

265In this study, the MK2, a low-cost depth sensing video camera,
266was paired with sophisticated modelling to develop a method of
267stratifying fall risk in older adults. Our model was highly accurate
268in predicting participants as either high fall risk (i.e. <40) or
269moderate-low fall risk (i.e. �40), with only one of 43 participants
270misclassified in our test dataset. Moreover, the median error of
271our model’s predictions was less than one point on the BBS. This
272protocol may therefore hold substantial clinical value given it is a
273safe and time-efficient balance assessment that can be performed
274by both ambulatory and non-ambulatory individuals.
275The machine learning algorithm accurately predicted the BBS
276score from the MK2 recordings of two simple, seated balance tasks.
277This approach offers several advantages over a standard BBS
278assessment. For example, each task in our MBBS takes less than
2792 min to complete, making our proposed method of balance assess-
280ment significantly faster to perform than the standard BBS (i.e. 2–
2814 min vs. 15–20 min for the complete BBS). Furthermore, because

Table 1
The clinician assigned BBS scores and the estimated BBS scores from the neural
network model, for each of the 43 participants in the test dataset.

Clinician BBS score Estimated BBS score Absolute error

21 19.06 1.94
28 24.56 3.44
33 27.31 5.69
36 34.82 1.18
38 37.83 0.17
39 37.91 1.09
40 38.52 1.48
42 41.32 0.68
42 39.95 2.05
42 42.52 0.52
43 42.21 0.79
44 41.17 2.83
45 46.21 1.21
47 50.27 3.27
48 47.82 0.18
48 47.55 0.45
48.5 48.52 0.02
49 49.80 0.80
50 51.86 1.86
50 50.33 0.33
51 50.21 0.79
51 49.53 1.47
51 52.08 1.08
52 52.14 0.14
52 52.93 0.93
52 53.03 1.03
52.5 52.95 0.45
53 54.16 1.16
53 51.85 1.15
53 52.69 0.31
53 53.18 0.18
53.5 53.76 0.26
54 53.64 0.36
54 52.88 1.12
54 54.41 0.41
55 53.77 1.23
55 54.21 0.79
55 54.40 0.60
55.5 54.60 0.90
55.5 54.61 0.89
56 53.08 2.92
56 55.00 1.00
56 54.94 1.06

Median (IQR): 0.93 (0.45–1.23)

BBS, Berg Balance Scale; IQR, Interquartile Range.
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282 all the tasks required in the MBBS are performed relatively slowly
283 and in a seated position, the risk of falling during an assessment is
284 much lower than the BBS.
285 There have been few comparisons between remote versus in-
286 person ratings of the BBS. Whilst the standard BBS has been shown
287 to have acceptable responsiveness to change in chronic stroke
288 (Alghadir et al., 2018), the median error in the predicted BBS scores
289 (<1 point) was considerably lower than the minimal detectable
290 change in stroke survivors (5.97 points at 80% confidence level)
291 (Saso et al., 2016). This suggests the methods proposed in this
292 study may be more capable of tracking longitudinal changes in fall
293 risk with enhanced sensitivity compared with common clinical
294 practice methods. A previous challenge for tele-assessment via
295 video capture was the need for repeated task performance to cap-
296 ture both frontal and lateral views (Venkataraman et al., 2017). The
297 utility of the MK2 to provide high definition 3D body tracking
298 enables our method to overcome this problem. Furthermore,
299 whilst functional balance measures such as the Performance Ori-
300 ented Mobility Assessment (POMA) (Tinetti, 1986) include a seated
301 balance component, this makes only a small contribution to the
302 overall measure.
303 The MK2 has previously been shown to provide reliable and
304 valid gait assessments in both healthy adults and stroke survivors
305 (Clark et al., 2015; Mentiplay et al., 2015). Our previous study,
306 which benchmarked the validity of the MK2 against force plat-
307 forms, demonstrated the MK2 could be used to measure postural
308 stability in healthy adults (Dehbandi et al., 2017). The current
309 study advances this work by demonstrating the accuracy of the
310 MK2 to estimate postural stability in a cohort of older adults,
311 including some with significant balance issues. The excellent pre-
312 dictive capacity of this model demonstrates progress towards a
313 tool that can automatically and accurately assess an individual’s
314 balance ability. The methodology presented in this study offers
315 the potential for remote monitoring of fall-risk from the safety of
316 the patient’s home. The equipment used in this study is inexpen-
317 sive, widely available and unobtrusive; improving access to the
318 monitoring of fall-risk in clinical populations experiencing postural
319 instability. We acknowledge that the methodological requirements
320 (i.e. appropriate space, access to mains power via cables), and the
321 potential need for assistance with the initial set-up, may limit
322 the practicality of our assessment technique. Research into the
323 acceptability and usability of depth-sensing devices and skeletal
324 tracking for physical function assessments in the home environ-
325 ment is needed.
326 Although the MK2 captures full body motion across 25 different
327 centroids, in our predictive model, we limited ourselves to the use
328 of two centroids - the lowest number of centroids appropriate for
329 our chosen machine learning methodology. We are interested in
330 the lowest number of centroids to provide accurate estimations
331 of fall-risk for two main reasons: (1) It allows for this otherwise
332 computationally demanding analysis to be performed in real time
333 if required, and (2) it makes our methodology generalizable in the
334 future to much simpler methods of motion capture techniques and
335 devices, such as wearable sensors.
336 This study is not without its limitations. We acknowledge the
337 low number of participants assessed who might be considered as
338 a high fall-risk (i.e. <40) may limit the generalizability of our find-
339 ings. Future trials will aim to reproduce this finding with a larger
340 sample size that also includes a wider spectrum of balance ability.
341 As soon as our findings are confirmed in a larger population, steps
342 will be taken to automate our machine learning approach to BBS
343 classification so that this system can be deployed as a truly
344 ‘‘plug-and-play” system for untrained clinical users. This will help
345 us to address any potential overfitting issues that may have
346 occurred from having a smaller sample size. Furthermore, all par-
347 ticipants included in this study were ambulatory, and it is possible

348non-ambulatory older adults respond differently to the MBBS pro-
349tocol used in this study. This would be an important future direc-
350tion of this work with substantial clinical relevance. Many people
351with conditions such as spinal cord injury have an extremely high
352risk of falling, but often don’t receive balance assessments because
353few clinical scales exist to stratify fall-risk in non-ambulatory indi-
354viduals. Although the MK2 was discontinued by Microsoft shortly
355after the completion of this study, products that are similar in price
356and quality, such as the Orbbec Astra, can be used for the data col-
357lection component of this protocol. In addition, Microsoft has
358recently announced the release of the Microsoft Kinect 3 in 2019,
359bringing the possibility of even more accurate technology. A recent
360narrative review highlights the current developments in 3D cam-
361era systems and skeleton tracking software, including alternatives
362to the now defunct MK2 (Clark et al, 2019).

3635. Conclusion

364We have shown that we can capture and interpret kinematic
365data to generate accurate predictions of balance scores in older
366adults with and without balance impairments. This methodology
367has the potential to support clinicians and therapists in their clin-
368ical decision-making when assessing the balance and potential fall-
369risk of their patients. It is also highly relevant to telerehabilitation
370service providers as we now have the potential to accurately mea-
371sure balance, and the risk of falling, in a home setting using low-
372cost, accessible technology. The practicality of a patient, and/or
373their carer, setting up and using a device like the MK2 within their
374home needs exploration.
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