
Journal of Computational Physics 508 (2024) 113012

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Solving a class of multi-scale elliptic PDEs by Fourier-based mixed

physics informed neural networks

Xi’an Li a, Jinran Wu b,∗, Xin Tai a, Jianhua Xu c, You-Gan Wang d

a Ceyear Technologies Co., Ltd, Qingdao 266555, China
b Australian Catholic University, Brisbane 4000, Australia
c The 41st Institute of China Electronics Technology Group Corporation, Qingdao, 266555, China
d The University of Queensland, St Lucia 4067, Australia

A R T I C L E I N F O A B S T R A C T

Keywords:

Multi-scale

Rough coefficient

FMPINN

Fourier feature mapping

Flux variable

Reduce order

Deep neural networks have garnered widespread attention due to their simplicity and flexibility
in the fields of engineering and scientific calculation. In this study, we probe into solving a
class of elliptic partial differential equations (PDEs) with multiple scales by utilizing Fourier-

based mixed physics informed neural networks (dubbed FMPINN), its solver is configured as a
multi-scale deep neural network. In contrast to the classical PINN method, a dual (flux) variable
about the rough coefficient of PDEs is introduced to avoid the ill-condition of neural tangent
kernel matrix caused by the oscillating coefficient of multi-scale PDEs. Therefore, apart from the
physical conservation laws, the discrepancy between the auxiliary variables and the gradients of
multi-scale coefficients is incorporated into the cost function, obtaining a satisfactory solution
of PDEs by minimizing the defined loss through some optimization methods. Additionally, a
trigonometric activation function is introduced for FMPINN, which is suited for representing the
derivatives of complex target functions. Handling the input data by Fourier feature mapping
will effectively improve the capacity of deep neural networks to solve high-frequency problems.
Finally, to validate the efficiency and robustness of the proposed FMPINN algorithm, we present
several numerical examples of multi-scale problems in various dimensional Euclidean spaces.
These examples cover low-frequency and high-frequency oscillation cases, demonstrating the
effectiveness of our approach. All code and data accompanying this manuscript will be publicly
available at https://github.com/Blue-Giant/FMPINN.

1. Introduction

Multi-scale problems, governed by partial differential equations (PDEs) with multiple scales, are prevalent in diverse scientific
and engineering fields like reservoir simulation, high-frequency scattering, and turbulence modeling. This paper focuses on solving
the following type of multi-scale problem:

* Corresponding author.

E-mail addresses: lixian9131@163.com (X. Li), ryan.wu@acu.edu.au (J. Wu), taixin@ceyear.com (X. Tai), xujianhua@ei41.com (J. Xu),
Available online 17 April 2024
0021-9991/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

ygwanguq2012@gmail.com (Y.-G. Wang).

https://doi.org/10.1016/j.jcp.2024.113012

Received 28 July 2023; Received in revised form 5 February 2024; Accepted 12 April 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
https://github.com/Blue-Giant/FMPINN
mailto:lixian9131@163.com
mailto:ryan.wu@acu.edu.au
mailto:taixin@ceyear.com
mailto:xujianhua@ei41.com
mailto:ygwanguq2012@gmail.com
https://doi.org/10.1016/j.jcp.2024.113012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2024.113012&domain=pdf
https://doi.org/10.1016/j.jcp.2024.113012
http://creativecommons.org/licenses/by/4.0/

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

⎧⎪⎨⎪⎩
−div

(
𝐴𝜀(𝒙)∇𝑢𝜀(𝒙)

)
= 𝑓 (𝒙), 𝒙 ∈Ω,

𝑢𝜀(𝒙) = 𝑔(𝒙), 𝒙 ∈ 𝜕Ω,

(1)

where Ω is a bounded subset of ℝ𝑑(𝑑 = 1, 2, 3, …) with piecewise Lipschitz boundary and satisfies the interior cone condition, 𝜀 is
a small positive parameter that signifies explicitly the multiscale nature of the rough coefficient 𝐴𝜀(𝒙).  is a boundary operator in
𝜕Ω that imposes the boundary condition of 𝑢𝜀, such as Dirichlet, Neumman and Robin. ∇ and div are the gradient and divergence
operators, respectively. 𝑓 (𝒙) ∈ 𝐿2(Ω) is a given function. In addition, 𝐴𝜀(𝒙) is symmetric and uniformly elliptic on Ω. It means that
all eigenvalues of 𝐴𝜀 are uniformly bounded by two strictly positive constants 𝜆min(𝐴𝜀) and 𝜆max(𝐴𝜀). In other word, for all 𝒙 ∈ Ω
and 𝝃 ∈ℝ𝑑 , we have

𝜆min(𝐴𝜀)|𝝃|2 ⩽ 𝝃𝑇 𝐴𝜀(𝒙)𝝃 ⩽ 𝜆max(𝐴𝜀)|𝝃|2. (2)

The multi-scale problem (1) frequently arises in the fields of physical simulations and engineering applications, including the study
of flow in porous media and the analysis of mechanical properties in composite materials [1–3]. Generally, the analytical solutions
of (1) are seldom available, so solving numerically this problem through approximation methods is necessary. Lots of numerical
methods focus on efficient, accurate and stable numerical schemes have gained favorable achievement, such as heterogeneous multi-

scale methods [2–4], numerical homogenization [5–7], variational multi-scale methods [8,9], multi-scale finite element methods [10–

12], flux norm homogenization [13,14], rough polyharmonic splines (RPS) [15], generalized multi-scale finite element methods
[16–18], localized orthogonal decomposition [19,20], etc. In contrast to standard numerical methods including FEM and FDM, they
alleviate substantially the computational complexity in handling all relevant scales, improve the numerical stabilities and expedite
the convergence. However, they still will encounter the curse of complex domain and dimensionality in general.

Deep neural networks (DNN), an efficient meshfree method without the discretization for a given interested domain, have drawn
more and more attention from researchers to solve numerically the ordinary and partial differential equations as well as the inverse
problems for complex geometrical domain and high-dimensional cases [21–27], due to their extraordinary universal approximation
capacity [28]. Among these methods, the physics-informed neural networks (PINN) dating back to the early 1990s again attracted
widespread attention of researchers and have made remarkable achievements for approximating the solution of PDEs by embrac-

ing the physical laws with neural networks, on account of the rapid development of computer science and technology [24,29].
This method skillfully incorporates the residual of governing equations and the discrepancy of boundary/initial constraints, then
formulates a cost function that can be optimized easily via the automatic differentiation in DNN. Many efforts have been made to
further enhance the performance of PINN are concluded as two aspects: refining the selection of the residual term and designing the
manner of initial/boundary constraints. In terms of the residual term, there are XPINN [30], cPINN [31], two-stage PINN [32] and
gPINN [33], and so on. By subtly encoding the I/B constraints into DNN in a hard manner, the PINN can be easy to train with low
computational complexity and obtain a high-precision solution of PDEs with complex boundary conditions [34–36]. Motivated by
the reduction of order in conventional methods [12], some attempts have been made to solve the high-order PDEs by reframing them
as some first-order systems, this will overcome the shortcomings of the computational burden for high-order derivatives in DNN. For
example, the deep mixed residual method [27], the local deep learning method [37] and the deep FOSLS method [38,39].

Many studies and experiments have indicated that the general DNN-based algorithms are commonly used to solve a low-frequency
problem in varying dimensional space, but will encounter tremendous challenges for high-frequency problems such as multi-scale
PDEs (1). The frequency principle (F-principle) [40] or spectral bias [41] of DNN shows that neural networks are typically efficient for
fitting objective functions with low-frequency modes but inefficient for high-frequency functions. Then, a series of multi-scale DNN
(MscaleDNN) models were proposed to overcome the shortcomings of normal DNN for high-frequency problems by converting high-

frequency contents into low-frequency ones via a radial scale technique [42–45]. After that, some corresponding mechanisms were
developed to explain this performance of DNN, such as the Neural Tangent Kernel (NTK) [46,47]. Furthermore, many researchers
attempted to utilize a Fourier feature mapping consisting of sine and cosine to improve the capacity of MscaleDNN, which will
alleviate the pathology of spectral bias and let neural networks capture high frequencies component effectively [45,46,48–51].

Recently, some works [52,53] have shown that general PINN architecture is unable to capture the multi-scale property of the
solution due to the effect of rough coefficient in multi-scale PDEs. Leung et al. [52] proposed a Neural homogenization-based PINN
(NH-PINN) method to solve (1), it can well overcome the unconvergence of PINN for multi-scale problems. However, NH-PINN also
will encounter the dilemma of dimensional and the burden of computation, because it will convert one low-dimensional problem
into a high-dimensional case. By carefully analyzing the NTK matrix associated with the PINN, Carney et al. [53] found that the
Forbenius norm of the NTK matrix will become unbound as the oscillation factor 𝜀 in 𝐴𝜀 tends to zero. It means that the evolution
of residual loss term in PINN will become increasingly stiff as 𝜀 → 0, then lead to poor training behavior for PINN.

In this paper, a Fourier-based multi-scale mixed PINN (FMPINN) structure is proposed to solve the multi-scale problems (1) with
rough coefficients. This method consists of the general PINN architecture and the aforementioned MscaleDNN model with subnet-

works being used to capture different frequency components. To overcome the weakness of the normal PINN that failed to capture
the jumping gradient information of the oscillating coefficient when tackling the governed equation in multi-scale PDEs (1), a (dual)
flux variable is introduced to alleviate the adverse effect of the rough coefficient. Meantime, it can also reduce the computational
burden of PINN for the second-order derivatives of space variables. In addition, the Fourier feature mapping is used in our model to
learn each target frequency efficiently and express the derivatives of multi-frequency functions easily, it will remarkably improve the
capacity for our FMPINN model to solve multi-scale problems. In a nutshell, the primary contributions of this paper are summarized
2

as follows:

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

1. We propose a novel neural networks approach by combining normal PINN and MscaleDNN with subnetworks structure to address
multi-scale problems, leveraging the Fourier theorem and the F-principle of DNN.

2. Inspired by the reduced order scheme for high-order PDEs, a dual (flux) variable about the rough coefficient of multi-scale PDEs
is introduced to address the gradient leakage about the rough coefficient for PINN.

3. By introducing some numerical experiments, we show that the classical PINN method with MscaleDNN solver is still insufficient
in providing accurate solutions for multi-scale equations.

4. We showcase the exceptional performance of FMPINN in solving a class of multi-scale elliptic PDEs with essential boundaries in
various dimensional spaces. Our method outperforms existing approaches and demonstrates its superiority in addressing these
complex problems.

The remaining parts of our work are organized as follows. In Section 2, we briefly introduce the underlying conceptions and
formulations for MscaleDNN and the structure of PINN. Section 3 provides a unified architecture of the FMPINN to solve the elliptic
multi-scale problem (1) based on its equivalent reduced order scheme, and gives the option of activation function as well as the
error analysis of our proposed method. Section 4 details the FMPINN algorithm for approximating the solution of elliptic PDEs with
multiple scales. In Section 5, some scenarios of multi-scale PDEs are performed to evaluate the feasibility and effectiveness of our
proposed method. Finally, some conclusions of this paper are made in Section 6.

2. Multi-scale physics informed neural networks

2.1. Multi-scale deep neural networks with ResNet technique

The basic concept and formulation of DNN are described briefly in this section, which helps audiences understand the DNN
structure through functional terminology. Mathematically, a DNN defines the following mapping

 ∶ 𝒙 ∈ℝ𝑑 ⟹ 𝒚 =  (𝑥) ∈ℝ𝑐 , (3)

with 𝑑 and 𝑐 being the dimensions of input and output, respectively. The DNN functional  is a nested composition of the following
single-layer neural unit:

𝒚 = {𝑦1, 𝑦2,⋯ , 𝑦𝑚} and 𝑦𝑙 = 𝜎

(
𝑑∑

𝑛=1
𝑤𝑙𝑛 ∗ 𝑥𝑛 + 𝑏𝑙

)
, (4)

where 𝑤𝑙𝑛 and 𝑏𝑙 are called weight and bias of 𝑙𝑡ℎ neuron, respectively. 𝜎(⋅) is an element-wise non-linear operator, generally referred
to as the activation function. Then, we have the following formulation of DNN:

𝒚[𝓁] = 𝜎◦(𝑾 [𝓁]𝒚[𝓁−1] + 𝒃[𝓁]), for 𝓁 = 1,2,3,⋯⋯ ,𝐿, (5)

and 𝒚[0] = 𝒙, where 𝑾 [𝓁] ∈ ℝ𝑛𝓁+1×𝑛𝓁 , 𝒃[𝓁] ∈ ℝ𝑛𝓁+1 stand for the weight matrix and bias vector of 𝓁-th hidden layer, respectively,
𝑛0 = 𝑑 and 𝑛𝐿+1 is the dimension of output, and “◦” stands for the elementary-wise operation. For convenience, the output of DNN
is denoted by 𝒚(𝒙; 𝜽) with 𝜽 standing for its all weights and biases.

Residual neural network (ResNet) [54] as a common skillful technique by introducing skip connections between adjacent or
nonadjacent hidden layers can overcome effectively the vanishing gradient of parameters in the backpropagation for DNN, then
make the network much easier to train and improve well the performance of DNN. Many experiment results showed that the ResNet
can also improve the performance of DNN to approximate high-order derivatives and solutions of PDEs [21,27]. We utilize the one-

step skip connection scheme of ResNet in this work. Except for the normal data flow, the data will also flow along with the skip
connection if the two consecutive layers in DNN have the same number of neurons, otherwise, the data flows directly from one to
the next layer. The filtered 𝒚[𝓁+1](𝒙; 𝜽) produced by the input 𝒚[𝓁](𝒙; 𝜽) is expressed as

𝒚[𝓁+1](𝒙;𝜽) = 𝒚[𝓁](𝒙;𝜽) + 𝜎◦
(
𝑾 [𝓁+1]𝒚[𝓁](𝒙;𝜽) + 𝒃[𝓁+1]

)
.

As we are aware, a normal DNN model is capable of providing a satisfactory solution for general problems. However, it will en-

counter troublesome difficulty in solving multi-scale problems with high-frequency components. Recently, a MscaleDNN architecture
has shown its remarkable performance in dealing with high-frequency problems by converting original data to a low-frequency space
[42–44,46]. A schematic diagram of MscaleDNN with 𝑄 subnetworks is depicted in Fig. 1.

The detailed procedure of MscaleDNN is described in the following.

1. Generating a scale vector or matrix with 𝑄 parts

Λ = (𝒌1,𝒌2,𝒌3⋯ ,𝒌𝑄−1,𝒌𝑄)𝑇 , (6)

where 𝒌𝑖(𝑖 = 1, 2, … , 𝑄) is a scalar or matrix (trainable or untrainable).

2. Converting the input data 𝒙 into 𝒙̃ = Λ ⊙𝒙 with ⊙ being the Hadamard product, then feeding 𝒙̃ into the pipeline of MscaleDNN.
3

It is

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

Fig. 1. A schematic diagram of MscaleDNN with 𝑄 subnetworks, 𝜎 stands for the activation function.

{
𝒙̂ = 𝒌𝑖𝒙
𝑭 𝑖(𝒙) =  𝑖 (𝒙̂)

𝑖 = 1,2,… ,𝑄, (7)

where  𝑖 stands for the 𝑖𝑡ℎ fully connected subnetwork and 𝑭 𝑖 is its output.

3. Obtaining the result of MscaleDNN by aggregating linearly the output of all subnetworks, each scale input goes through a
subnetwork. It is

𝑵𝑵(𝒙) =𝑾 𝑂 ⋅
[
𝑭 1(𝒙),𝑭 2(𝒙),⋯ ,𝑭𝑄(𝒙)

]
+ 𝒃𝑂, (8)

where 𝑾 𝑂 and 𝒃𝑂 stand for the weights and biases of the last linear layer, respectively.

From the perspective of Fourier transformation and decomposition, the first layer of the MscaleDNN model will be treated as a series
of basis in Fourier space and its output is the combination of those basis functions [42,44,46].

2.2. Overview of physics-informed neural networks

In the scope of PINN, a type of PDE governed by parameters as the toy to show its implementation, it is

𝝀[𝑢̂(𝒙)] = 𝑓 (𝒙), 𝒙 ∈Ω,

𝑢̂ (𝒙) = 𝑔̂(𝒙), 𝒙 ∈ 𝜕Ω,
(9)

in which 𝝀 stands for the linear or nonlinear differential operator with parameters 𝝀,  is the boundary operator, such as Dirichlet,
Neumann, periodic boundary conditions, or a mixed form of them. Ω and 𝜕Ω respectively illustrate the domain of interest and its
boundary. For approximating the solution of the multi-scale PDEs, a multi-scale deep neural network 𝑢𝑁𝑁 is used. In classical PINN,
the ideal parameters of the DNN can be obtained by minimizing the following composite loss function

𝐿𝑜𝑠𝑠(𝐼 ,𝐵 ;𝜽) =𝐿𝑜𝑠𝑠𝑅(𝐼 ;𝜽) + 𝛾𝐿𝑜𝑠𝑠𝐵(𝐵 ;𝜽) (10)

with

𝐿𝑜𝑠𝑠𝑅(𝐼 ;𝜽) =
1

𝑁𝑅

𝑁𝑅∑
𝑖=1

‖‖‖𝝀[𝑢𝑁𝑁 (𝒙𝑖
𝐼
,𝜽)] − 𝑓 (𝒙𝑖

𝐼
)‖‖‖2 ,

𝐿𝑜𝑠𝑠 ( ;𝜽) = 1
𝑁𝐵∑‖‖𝑢 (

𝒙
𝑗
,𝜽
)
− 𝑔̂(𝒙𝑗)

‖‖2, (11)
4

𝐵 𝐵 𝑁𝐵 𝑗=1
‖‖ 𝑁𝑁 𝐵 𝐵 ‖‖

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

where 𝛾 > 0 is used to control the contribution for the corresponding loss term. 𝐿𝑜𝑠𝑠𝑅 and 𝐿𝑜𝑠𝑠𝐵 depict the residual of the governing
equations and the loss on the boundary condition, respectively. If some additional observed data are available inside the interested
domain, then a loss term indicating the mismatch between the predictions produced by DNN and the observations can be taken into
account

𝐿𝑜𝑠𝑠𝐷 = 1
𝑁𝐷

𝑁𝐷∑
𝑖=1

‖‖‖‖𝑢𝑁𝑁 (𝒙𝑖,𝜽) − 𝑢𝑖
𝐷𝑎𝑡𝑎

‖‖‖‖2. (12)

Finally, the solution of PDEs is cast into the optimization of DNN. To obtain the ideal 𝜽∗, one can update the weights and biases of
DNN through the optimization methods such as gradient descent (GD), stochastic gradient descent (SGD) and the improved versions
of SGD including Adam [55], Adagrad [56] and RMSprop [57] during the training process. In this context, the SGD method with a
“one-batch” of training data is given by:

𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝑘∇𝜽𝑘𝐿𝑜𝑠𝑠(𝒙;𝜽
𝑘) with 𝒙 ∈ 𝐼 or 𝒙 ∈ 𝐵 (13)

where the “learning rate” 𝛼𝑘 decreases with 𝑘 increasing.

3. Fourier-based mixed PINN to solve multi-scale problem

In this section, the unified architecture of FMPINN is proposed to overcome the adverse effect of derivative for rough coefficient
𝐴𝜀 by embracing a multi-output neural network with an equivalent reduced-order formulation of the multi-scale problem (1).

3.1. Failure of classical PINN

Despite the success of various PINN models in studying ordinary and partial differential equations, it has been observed in Leung
et al. [52] that the classical PINN approach fails to provide accurate predictions for multi-scale PDEs (1). Furthermore, we find that a
direct application of the PINN with MscaleDNN framework on solving (1) still cannot provide a satisfactory solution, because of the
ill-posed NTK matrix caused by rough coefficient 𝐴𝜀. For example, let us consider the following one-dimensional elliptic equation
with a homogeneous Dirichlet boundary in Ω = [0, 1]:⎧⎪⎨⎪⎩

− 𝑑

𝑑𝑥

(
𝐴𝜀(𝑥) 𝑑

𝑑𝑥
𝑢𝜀(𝑥)

)
= 5cos(𝜋𝑥),

𝑢𝜀(0) = 𝑢𝜀(1) = 0,

in which 𝐴𝜀(𝑥) = 1 + 𝑥2

2 + sin(2𝜋𝑥∕𝜀)
with 𝜀 > 0 being a small constant.

We employ the classical PINN method with the MscaleDNN framework (see Fig. 1) to solve (1), called this method as
MPINN. The scale factors Λ for MscaleDNN is set as (1, 2, 3, 4, 5, 10, ⋯ , 90, 95, 100) and the size of each subnetwork is chosen as
(1, 30, 40, 30, 30, 30, 1). The activation function of the first hidden layer for all subnetworks is set as Fourier feature mapping (see
Section 3.3) and the other activation functions (except for their output layer) are chosen as 12 sin(𝑥) +

1
2 cos(𝑥) [58], their output

layers are all linear. For 𝜀 = 1
32 ,

1
64 and 1

128 , we train the aforementioned MPINN model for 50000 epochs and conduct testing every
1000 epochs within the training cycle. The optimizer is set as Adam with an initial learning rate of 0.01 and the learning rate will
decay by 2.5% for every 100 epochs. Finally, the results are demonstrated in Fig. 2.

As 𝜀 = 1∕32, the coefficient 𝐴𝜀(𝑥) possesses a little multi-scale information, and the MPINN performs quite well. However, the
permeability 𝐴𝜀(𝑥) will exhibit various multi-scale properties for 𝜀 = 1∕64, the performance of MPINN deteriorates with a low relative
error and the MPINN fails to converge for 𝜀 = 1∕128. In addition, we perform the MPINN with different setups of the hyperparameters
such as the learning rate and the 𝛾 for 𝐿𝑜𝑠𝑠𝐵 in (10) as well as the network size, but we still cannot obtain a satisfactory result.

3.2. Unified architecture of FMPINN

Based on the above observation, it is necessary to seek some extra techniques to improve the accuracy of the PINN. Inspired
by the mixed finite element method [12,59] and the mixed residual method [27], we can leverage a mixed scheme to solve (1)

by replacing the flux term 𝐴𝜀∇𝑢 in (1) with an auxiliary variable. This strategy not only can avoid the unfavorable effect of the
oscillating coefficient 𝐴𝜀, but also can reduce the computation burden of second-order derivatives in cost function when utilizing a
MscaleDNN to approximate the solution of (1). Therefore, we introduce a flux variable 𝝓(𝒙) =

(
𝜙1(𝒙), … , 𝜙𝑑 (𝒙)

)
=𝐴𝜀(𝒙)∇𝑢𝜀(𝒙) and

rewrite the first equation in (1) as the following expressions:

− 𝐝𝐢𝐯𝝓(𝒙) = 𝑓 (𝒙),

𝝓(𝒙) −𝐴𝜀(𝒙)∇𝑢𝜀(𝒙) = 𝟎.
(14)

Then we turn to search a couple of functions (𝑢𝜀, 𝝓) in admissible space with 𝑢𝜀 satisfying the prescribed boundary condition,
rather than approximating a unique solution of the original problem (1). Here and thereafter, (𝑢𝜀, 𝝓) ∈ =1(Ω) ×(𝐝𝐢𝐯; Ω) with { } { }
5

1(Ω) = 𝑣 ∈𝐿2(Ω) ∶ ∇𝑣 ∈𝐿2(Ω) and (𝐝𝐢𝐯; Ω) = 𝝍 ∈ [𝐿2(Ω)]𝑑 ∶ 𝐝𝐢𝐯𝝍 ∈𝐿2(Ω) .

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

Fig. 2. Left: the rough coefficient 𝐴𝜀 . Middle: the MPINN approximated solution vs the reference solution. Right: 𝑙2 relative error varies with the testing epoch. (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

When utilizing numerical solvers to address the equation (14), one can obtain the optimum solution by minimizing the following
least-squares formula in the domain Ω:

𝑢∗,𝝓∗ = argmin
(𝑢𝜀,𝝓)∈1(Ω)×(𝐝𝐢𝐯;Ω)

(𝑢𝜀,𝝓) (15)

with

(𝑢𝜀,𝝓) = ∫
Ω

|||− 𝐝𝐢𝐯𝝓(𝒙) − 𝑓 (𝒙)|||2𝑑𝒙+ 𝛽 ∫
Ω

|||𝝓(𝒙) −𝐴𝜀(𝒙)∇𝑢𝜀(𝒙)|||2𝑑𝒙, (16)

where 𝛽 > 0 is used to adjust the approximation error of the flux variable and flux term, and 𝑢𝜀 is coercive on the boundary of the
domain, such as the Dirichlet boundary conditions for the case of a second-order elliptic problem.

Generally, two independent neural networks are necessary to approximate the flux variable 𝝓 and solution 𝑢, but 𝝓 is uncon-

strained without any coercive boundary condition. Based on the potentiality of DNN for approximating any linear and non-linear
complex functions, we take a DNN with multi outputs to model ansatzes 𝝓 and 𝑢, denoted by 𝝓𝑁𝑁 and 𝑢𝑁𝑁 , respectively.

Fig. 3 describes the multi-output neural network for an input 𝒙 ∈ℝ2.

Once the expressions of auxiliary functions 𝝓 and solution 𝑢𝜀 have been determined, we can discretize (16) by the Monte Carlo
method [60], then employ the PINN conception and obtain the following form

|Ω| 𝑁𝑖𝑛∑[| 𝑖 𝑖 |2 | 𝑖 𝜀 𝑖 𝑖 |2]

6

ℒ𝑖𝑛(𝑆𝐼 ;𝜽) = 𝑁𝑖𝑛 𝑖=1
||− div𝝓𝑁𝑁 (𝒙

𝐼
;𝜽) − 𝑓 (𝒙

𝐼
)|| + 𝛽||𝝓𝑁𝑁 (𝒙

𝐼
,𝜽) −𝐴 (𝒙

𝐼
)∇𝑢𝑁𝑁 (𝒙

𝐼
,𝜽)|| , (17)

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

Fig. 3. The multi-output neural network for approximating the state and flux variables.

for 𝒙𝑖
𝐼
∈ 𝑆𝐼 , here and hereinafter 𝑆𝐼 stands for the collection sampled from Ω with prescribed probability density.

Same to the traditional numerical methods such as FDM and FEM for addressing PDEs, boundary conditions play a crucial
role in DNN representation as well. They serve as important constraints that ensure the uniqueness and accuracy of the solution.
Consequently, the output 𝑢𝑁𝑁 of DNN should also satisfy the boundary conditions of (1), which means

ℒ𝑏𝑑 (𝑆𝐵 ;𝜽) =
1

𝑁𝑏𝑑

𝑁𝑏𝑑∑
𝑗=1

[
𝑢𝑁𝑁

(
𝒙
𝑗

𝐵
;𝜽
)
− 𝑔(𝒙𝑗

𝐵
)
]2

→ 0 for 𝒙
𝑗

𝐵
∈ 𝑆𝐵, (18)

here and hereinafter 𝑆𝐵 represents the collection sampled on 𝜕Ω with prescribed probability density.

According to the above results, the weights and biases of the DNN model are updated by optimizing gradually the following cost
function:

ℒ(𝑆𝐼 ,𝑆𝐵 ;𝜽) =ℒ𝑖𝑛(𝑆𝐼 ;𝜽) + 𝛾ℒ𝑏𝑑 (𝑆𝐵 ;𝜽), (19)

where 𝑆𝐼 = {𝒙𝑖
𝐼
}𝑁𝑖𝑛

𝑖=1 and 𝑆𝐵 = {𝒙𝑗
𝐵
}𝑁𝑏𝑑

𝑗=1 stand for the train data of Ω and 𝜕Ω, respectively. The term of ℒ𝑖𝑛 composed of the residual
governed by differential equations and the discrepancy concerning flux, minimizes the residual of the PDEs, whereas the term of ℒ𝑏𝑑

pushes the DNN solver to match the given boundary conditions. In addition, a constant parameter 𝛾 > 0 is introduced to force well
the ℒ𝑏𝑑 (𝑆𝐵 ; 𝜽) → 0 in the loss function, it is increasing gradually with training process going on.

Based on the analysis in Bersetche and Borthagaray [39], a nonconstant continuous activation function 𝜎 can guarantee the
mapping 𝜽↦ (𝑢𝑁𝑁, 𝝓𝑁𝑁) is continuous, then the distance between approximation functions 𝒒𝑁𝑁 = (𝑢𝑁𝑁, 𝝓𝑁𝑁) and exact solution
𝒒∗ = (𝑢∗, 𝝓∗) will decrease by adjusting gradually the parameters of DNN, i.e.,

𝑑(𝒒∗,𝑘) = inf
𝒒𝑁𝑁∈𝑘

‖𝒒∗ − 𝒒𝑁𝑁‖→ 0 as 𝑘→∞.

It means the loss function ℒ(𝑆𝐼 ,𝑆𝐵 ; 𝜽) will attain the corresponding minimum when 𝑑 → 0. Hence, Our purpose is to find an optimal
set of parameter 𝜽∗ such that the approximations 𝑢𝑁𝑁 and 𝝓𝑁𝑁 minimize the loss function ℒ(𝑆𝐼 ,𝑆𝐵 ; 𝜽). If the loss function value
is small enough, then 𝑢𝑁𝑁 and 𝝓𝑁𝑁 will be very close to the solution of (1). Then, optimization methods like SGD, Adam, Adagrad
and RMSprop are required to update the parameters of the DNN during the training.

3.3. Option of activation function for FMPINN and its explanation

Choosing a suitable and effective activation function is a critical concern when aiming to enhance the performance of DNN in
computer vision, natural language processing, and scientific computation. Generally, an activation function such as rectified linear
unit ReLU(𝒛) and hyperbolic tangent function tanh(𝒛), can improve the capacity and nonlinearity of neural networks to address
various nonlinear problems, such as the solution of various PDEs and classification. Recently, the works [40,41] manifested that
the DNN often captures firstly the low-frequency component for target functions, then matches the high-frequency component, they
called it the spectral bias or frequency preference of DNN. Under this phenomenon, many researchers attempt to utilize a Fourier
feature mapping consisting of sine and cosine as the activation function to improve the capacity of MscaleDNN, it will mitigate the
pathology of spectral bias and enable networks to learn high frequencies more effectively [41,46,49,50]. It is expressed as follows:

𝜁(𝒙) =
[
cos(𝜿𝒙)
sin(𝜿𝒙)

]
, (20)

where 𝜿 is a user-specified vector or matrix (trainable or untrainable) that is consistent with the number of neural units in the first
hidden layer for DNNs. Further, the work [45] designed a soften Fourier mapping by introducing a relaxing parameter 𝑠 ∈ (0, 1] in
𝜁(𝒙), numerical results show that this modification will improve the capacity of 𝜁(𝒙). This activation function is used in the first
hidden layer of DNN and maps the input data in Ω into a range of [−1, 1], then enhances the ability of DNN and expedites its
7

convergence.

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

Fig. 4. Illustration of the total error for FMPINN.

Therefore, a real function (𝑥) represented by DNN can be expressed as follows

(𝒙) =
𝑁̃∑
𝑛=0

(
𝑆
(
cos(𝒌𝑛𝒙); 𝜽̄𝑛

)
+ 𝑇

(
sin(𝒌𝑛𝒙); 𝜽̃𝑛

))
,

where 𝑆(⋅, ̄𝜽), 𝑇 (⋅, ̃𝜽) are the DNNs or the sub-modules of DNNs, respectively, {𝒌0, 𝒌1, 𝒌2, ⋯} are the frequencies of interest for the
objective function. The first hidden layer performed by Fourier feature mapping mimics the Fourier basis function, and the remaining
blocks with different activation functions are used to learn the coefficients of these functions. After performing the Fourier mapping
for input points with a given scale factor, the neural network can well capture the fine varying information for multi-scale problems.

Remark 1. (Lipschitz continuity) If an activation function 𝜎 is continuous (i.e., 𝜎 ∈ 𝐶1) and satisfies the following boundedness
condition:

|𝜎(𝑥)| < 1 and |𝜎′(𝑥)| < 1,

for any 𝑥 ∈ℝ. Then, we have

|𝜎(𝑥) − 𝜎(𝑦)| ⩽ |𝑥− 𝑦| and |𝜎′(𝑥) − 𝜎′(𝑦)| < |𝑥− 𝑦|,
for any 𝑥, 𝑦 ∈ ℝ. The activation functions 𝑡𝑎𝑛ℎ(𝑥), 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥), Fourier feature mapping 𝜁(𝑥) and 12 𝑠𝑖𝑛(𝑥) +

1
2 𝑐𝑜𝑠(𝑥) are all satisfy

the above condition and have a good regularity, they will overcome the gradient explosion of parameter in the backpropagation for
DNN and improve the capacity of DNN.

3.4. Simple error analysis for FMPINN

In recent times, there have been endeavors to rigorously analyze the convergence rate of the deep mixed residual method and
compare it with the deep Galerkin method (DGM) and deep Ritz method (DRM) across different scenarios [39,61,62]. In this study,
we investigate those results of convergence again, then provide the expression of generalization error for FMPINN and some remarks
of errors.

For convenience, let 𝒒∗ = (𝑢∗, 𝝓∗) be the exact solution of equation (14) or the minimum of cost function (15) with (16) for coer-

cive boundary constraints. Meantime, the 𝒒𝜽∗ = (𝑢𝜽∗ , 𝝓𝜽∗) stands for the final output of DNN optimized by stochastic optimizer (such
as Adam or SGD) that attains the local minimum of (19). Further, we let ℒ̃(𝑢, 𝝓) be the cost function evaluated on 𝑁 points sampled
from Ω and denote the output of DNN as 𝒒𝜽 = (𝑢𝜽, 𝝓𝜽). Finally, 𝑁𝑁 represents the function space spanned by the output of DNN.
Then, the total error (or generalization error) between the exact solution 𝒒∗ and the output of DNN 𝒒𝜽 can be expressed as‖‖‖𝑢𝜽 − 𝑢∗

‖‖‖1(Ω)
+ ‖‖‖𝝓𝜽 −𝝓∗‖‖‖1(𝒅𝒊𝒗,Ω)

⩽ 𝐶(𝑐𝑜𝑒)
√

𝛿𝑎𝑝𝑝 + 𝛿𝑒𝑠𝑡 + 𝛿𝑜𝑝𝑡 (21)

with ⎧⎪⎪⎨⎪⎪⎩
𝛿𝑎𝑝𝑝 = inf

(𝑢,𝝓)∈𝑁𝑁

‖𝑢− 𝑢∗‖21(Ω)
+ ‖𝝓−𝝓∗‖2(𝒅𝒊𝒗,Ω),

𝛿𝑒𝑠𝑡 = sup
(𝑢,𝝓)∈𝑁𝑁

[(𝑢,𝝓) − ℒ̃(𝑢,𝝓)] + sup
(𝑢,𝝓)∈𝑁𝑁

[ℒ̃(𝑢,𝝓) −(𝑢,𝝓)],
𝛿𝑜𝑝𝑡 = ℒ̃(𝑢𝜽∗ ,𝝓𝜽∗) − ℒ̃(𝑢𝜽,𝝓𝜽).

In which, the approximated error 𝛿𝑎𝑝𝑝 indicates the difference between (𝑢∗, 𝝓∗) and its projection onto 𝑁𝑁 , the estimation error
𝛿𝑒𝑠𝑡 measures the difference between the continuous cost function  and discrete cost function ℒ̃, the optimization error 𝛿𝑜𝑝𝑡 stands
for the discrepancy between the output of DNN with optimizing and the output of DNN without optimizing. In Fig. 4, we depict the
diagram of error for FMPINN. The convergence and error analysis of MIM in works [61,62] can be used to support our results in this
section by appropriately adjusting their corresponding conclusions.

Remark 2. The approximating error is generally dependent on the architectural design of the neural network and the choice of the
8

activation function. Classical radial basis network [63], the vanilla DNN and Random feature network [64] as well as its special

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

case Extreme Learning Machine (ELM) [65,66] are the common meshless method for approximating the solution of PDEs. To address
the spatio-temporal problems, some hybrid network frameworks have been designed by combining PINN with traditional numerical
methods to solve PDEs, such as FDM-PINN and Runge-Kutta PINN [24,67]. Moreover, instead of soft constraints in a hard manner for
the boundary or initial conditions in those methods, the approximation will automatically meet the boundary and initial conditions
of PDEs, then reduce the complexity and improve the precision of NN [35]. On the other hand, a powerful activation function,
such as the hyperbolic tangent activation function and Fourier feature mapping, not only enhances the nonlinearity of DNN but also
improves its approximating capacity and accuracy. In addition, some available data are generally considered as a loss term to reduce
the approximating error.

Remark 3. Generally, the proposed FMPINN surrogate can provide more accurate approximations as the number of random collo-

cation points increases. However, it will lead to heavy computational costs for lots of samplings. Then, it is worthwhile to take into
account the trade-off between accuracy and computational cost when designing a DNN surrogate and determining its training mode.
Alternatively, one can employ some effective low-discrepancy sampling approaches to decrease the statistical error, such as the Latin
hypercube sampling method [68], quasi-random sampling [69] and multilevel Monte Carlo method [70].

Remark 4. Since the cost function generally is non-convex and has several local minima, then the gradient-based optimizer will
almost certainly become caught in one of them. Therefore, choosing a good optimizer is important to reduce the optimization error
and get a better minimum. In many scenarios of optimizing DNN, the Adam optimization method has shown its good performance
including efficiency and accuracy, it can dynamically adjust the learning rates of each parameter by using the first and second
moments estimation of the gradients [55]. BFGS is a quasi-Newton method and numerically stable, it may provide a higher-precision
approximated solution [71]. In an implementation, the limited memory version of BFGS (L-BFGS) is the common choice to decrease
the optimization error and accelerate convergence for cases with a small amount of training data and/or residual points. Further,
by combining the merits of the above two approaches, one can optimize the cost function firstly by the Adam algorithm with a
predefined stop criterion, then obtain a better result by the L-BFGS optimizer.

4. FMPINN algorithm

For the FMPINN method with the MscaleDNN model composed of 𝑄 subnetworks as in Fig. 1 being its solver, the input data for
each subnetwork will be transformed by the following operation

𝒙̂ = 𝑎𝑖 ∗ 𝒙, 𝑖 = 1,2,… ,𝑄,

with 𝑎𝑖 ⩾ 1 being a positive scalar factor, it means the scale vector Λ = (𝑎1, 𝑎2, … , 𝑎𝑄) as in (6). Denoting the output of each
subnetwork as 𝑭 𝑖(𝑖 = 1, 2, … , 𝑄), then the overall output of the MscaleDNN model is obtained by

𝒚(𝒙;𝜽) = 1
𝑄

𝑄∑
𝑖=1

𝑭 𝑖

𝑎𝑖
.

According to the above discussions, the procedure of the FMPINN algorithm for addressing the multi-scale problem (1) in finite-

dimensional spaces is described in the following.

Algorithm 1 FMPINN algorithm for solving multi-scale PDEs (1)

1. Generating the 𝑘𝑡ℎ training set 𝑘 includes interior points 𝑆𝑘
𝐼
= {𝒙𝑖

𝐼
}𝑁𝑖𝑛

𝑖=1 with 𝒙𝑖
𝐼
∈ℝ𝑑 and boundary points 𝑆𝑘

𝐵
= {𝒙𝑗

𝐵
}𝑁𝑏𝑑

𝑗=1 with 𝒙𝑗
𝐵
∈ℝ𝑑 . Here, we draw the random

points 𝒙𝑖
𝐼

and 𝒙𝑗
𝐵

from ℝ𝑑 with positive probability density 𝜈, such as uniform distribution.

2. Calculating the objective function ℒ(𝑘; 𝜽𝑘) for training set 𝑘 :

ℒ(𝑘;𝜽𝑘) =ℒ𝑖𝑛(𝑆𝑘
𝐼
;𝜽𝑘) + 𝛾ℒ𝑏𝑑 (𝑆𝑘

𝐵
;𝜽𝑘)

with ℒ𝑖𝑛(⋅; 𝜽𝑘) being defined in (17) and ℒ𝑏𝑑 (⋅; 𝜽𝑘) being defined in (18).

3. Taking a suitable optimization method to update the internal parameters of DNN at the random point of 𝒙̃𝑘 , such as SGD method expressed as follows:

𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝑘∇𝜽𝑘ℒ(𝒙̃𝑘;𝜽𝑘) with 𝒙̃𝑘 ∈ 𝑘,

where the “learning rate” 𝛼𝑘 decreases with 𝑘 increasing.

4. Repeating steps 1-3 until the convergence criterion is satisfied or the objective function tends to be stable.

5. Numerical experiments

The goal of our experiments is to show that our FMPINN is indeed capable of approximating the analytical solution given in
(1). For comparison purposes, the PINN method with MscaleDNN being its solver and the local deep learning method (LDLM) with
9

normal DNN being its solver is as the baseline to solve (1) in varying-dimensional spaces.

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

5.1. Model and training setup

In the aforementioned FMPINN and MPINN models, a standard MscaleDNN with multi subnetworks that stretch the input data
via various scale factors is configured as their solver. The MscaleDNN consists of 24 subnetworks according to the manually defined
frequencies vector Λ = (1, 2, 3, 4, 5, 10, ⋯ , 90, 95, 100). Each subnetwork contains 5 hidden layers with proper size and the activation
function of the first hidden layer for each subnetwork is set as Fourier feature mapping and the other activation functions (except
for the output layer) are set as 12 sin(𝑥) +

1
2 cos(𝑥), its output layer is linear. The overall output is a weighted sum of the outputs

of all subnetworks through the relevant scale factors. In terms of the LDLM [37], two activation functions are considered for this
model: LDLM1 with 𝑅𝑒𝑄𝑈 =max{0, 𝑥}2 being its activation for hidden layers and LDLM2 with 12 sin(𝑥) +

1
2 cos(𝑥) being its activation

function for hidden layers, their output is all linear.

In our numerical experiments, all training data are sampled from the domain (including its boundaries) of interest in Euclidean
space ℝ𝑑 , the sampling probability densities are assigned as the uniform distribution. We train all neural networks by an Adam
optimizer with an initial learning rate of 0.01, and the learning rate will be decayed by 2.5% for every 100 training epochs [55].
Here, the following 𝐿2 relative error is used to evaluate our models:

𝑅𝐸𝐿 =

√√√√∑𝑁 ′
𝑖=1 |𝑢̃(𝒙𝑖) − 𝑢∗(𝒙𝑖)|2∑𝑁 ′

𝑖=1 |𝑢∗(𝒙𝑖)|2 ,

where 𝑢̃(𝒙𝑖) and 𝑢∗(𝒙𝑖) are the approximate solution of deep neural network and exact solution for testing points {𝒙𝑖}(𝑖 = 1, 2, ⋯ , 𝑁 ′),
respectively, and 𝑁 ′ represents the number of sample points for testing. In addition, we also introduce the following relative error
within the 𝐻1 norm to measure the approximation accuracy for our proposed FMPINN.

𝐻1𝐸𝑅𝑅 =

√√√√∑𝑁 ′
𝑖=1 |𝑢̃(𝒙𝑖) − 𝑢∗(𝒙𝑖)|2 +∑𝑁 ′

𝑖=1 |∇𝑢̃(𝒙𝑖) − ∇𝑢∗(𝒙𝑖)|2∑𝑁 ′
𝑖=1 |𝑢∗(𝒙𝑖)|2 +∑𝑁 ′

𝑖=1 |∇𝑢∗(𝒙𝑖)|2
To visualize the training process, our model will be evaluated once for every 1000 iterations in the whole training cycle and

recorded the result at the end. In our codes, the penalty parameter 𝛾 is set as

𝛾 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝛾0, if 𝑖epoch <𝑀max ∗ 0.1

10𝛾0, if 𝑀max ∗ 0.1 <= 𝑖epoch <𝑀max ∗ 0.2

50𝛾0, if 𝑀max ∗ 0.2 <= 𝑖epoch <𝑀max ∗ 0.25

100𝛾0, if 𝑀max ∗ 0.25 <= 𝑖epoch <𝑀max ∗ 0.5

200𝛾0, if 𝑀max ∗ 0.5 <= 𝑖epoch <𝑀max ∗ 0.75

500𝛾0, otherwise,

(22)

where the 𝛾0 = 10 in all our tests and 𝑀max represents the total number of epochs. We implement and perform all neural network
models using the package of Pytorch (version 1.14.0) on a workstation (64 GB RAM, single NVIDIA GeForce RTX 4090 24-GB).

5.2. Performance of FMPINN for solving multi-scale elliptic PDEs

Example 1. Firstly, we consider the one-dimensional case for (1) with Dirichlet boundary in interval [0, 1], in which 𝐴𝜀(𝑥) is given
by

𝐴𝜀(𝑥) =
(
2 + cos

(
2𝜋 𝑥

𝜀

))−1
(23)

with a small parameter 𝜀 > 0 such that 𝜀−1 ∈ ℕ+ and the force term 𝑓 (𝑥) = 1. Under these conditions, a unique solution is given by

𝑢𝜀(𝑥) = 𝑥− 𝑥2 + 𝜀

(
1
4𝜋

sin
(
2𝜋 𝑥

𝜀

)
− 1

2𝜋
𝑥 sin

(
2𝜋 𝑥

𝜀

)
− 𝜀

4𝜋2 cos
(
2𝜋 𝑥

𝜀

)
+ 𝜀

4𝜋2

)
. (24)

The analytical solution induces its boundary condition 𝑢𝜀(0) = 𝑢𝜀(1) = 0.

In this example, we use the FMPINN, MPINN, LDLM1, and LDLM2 models to solve (1) when 𝜀 = 0.1, 0.01 and 0.001, respectively.
The size of the hidden layer for each subnetwork of FMPINN and MPINN is set as (30, 40, 30, 30, 30) and the balance parameter 𝛽
in (17) is set as 10. The hidden layer’s size for LDLM is set as (300, 400, 300, 300, 300). Their parameters’ numbers are comparable.
At each training step, we randomly sample 3000 points inside the [0, 1] and 500 boundary points as a training dataset. In addition,
the testing dataset includes 1000 equidistant samples from [0, 1]. All models are trained for 50000 epochs. We depict the related
experiment results in Figs. 5, 6 and 7, respectively. Meantime, the final relative 𝐿2 and 𝐻1 error and total running time are listed in
10

Tables 1 and 2.

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

Fig. 5. Rough coefficient, loss of flux term and testing results for Example 1 when 𝜀 = 0.1.

Table 1

The relative error and running time of FMPINN, MPINN, LDLM1, and LDLM2 for Example 1.

REL Total time(s)

𝜀 FMPINN MPINN LDLM1 LDLM2 FMPINN MPINN LDLM1 LDLM2

0.1 2.92e-6 2.60e-7 0.3227 0.3389 680.734 865.849 345.791 373.537

0.01 1.21e-6 0.874 0.3397 0.3406 689.729 868.199 351.451 377.089

0.001 9.28e-5 0.99 0.3389 0.3398 691.458 875.297 358.435 388.273

Based on these figures, the FMPINN model can perfectly capture the oscillation of the exact solution for 𝜀 = 0.1, 0.01 and 0.001,
but LDLM models are not convergent for these cases. At the same time, the performance of MPINN competes with that of FMPINN
when 𝜀 = 0.1. However, the MPINN model fails to solve the multi-scale problem for 𝜀 = 0.1 and 0.01. Compared to 𝜀 = 0.01, the rough
coefficient 𝐴𝜀 with 𝜀 = 0.001 have more oscillation in the interval [0, 1], but the FMPINN still can keep its remarkable performance.
According to the point-wise errors in Figs. 5(d), 6(d) and 7(d) and the relative error in Figs. 5(h), 6(h) and 7(h), we can conclude
that the FMPINN can approximate high-precisely the exact solution of (1) in one-dimensional space. In addition, the total time in
Table 1 shows the running time of FMPINN is less than that of MPINN for 50000 training epochs.

In addition, the finite element method (FEM) is introduced for comparison in solving the multiscale problem (1) in one-

dimensional space with varying numbers of equidistant points. The results of both FMPINN and FEM methods are presented in
Table 3, which demonstrate that our proposed method surpasses the FEM in terms of accuracy for 1000 equidistant points within the
interval [0, 1]. With the number of points increasing, the performance of FEM will become better and better for 𝜀 = 0.1, 0.01, and
11

0.001, and it will surpass FMPINN in terms of accuracy and running time for 100000 and 500000 equidistant points.

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

Fig. 6. Rough coefficient, loss of flux term and testing results for Example 1 when 𝜀 = 0.01.

Table 2

The relative error in 𝐻1 norm for FMPINN model
VS various 𝜀 for Example 1.

𝜀 0.1 0.01 0.001

H1ERR 0.01753 0.001823 0.002995

Table 3

The REL and running time of FMPINN and Finite Element Method for Example 1.

Method Number of points REL Time(s)

𝜀 = 0.1 𝜀 = 0.01 𝜀 = 0.001 𝜀 = 0.1 𝜀 = 0.01 𝜀 = 0.001

FMPINN 1000 2.922e-6 1.215e-6 9.283e-5 680.734 689.729 691.458

FEM 1000 4.447e-5 0.0044 0.1338 0.3365 0.3057 0.3168

5000 1.776e-6 1.762e-4 0.01666 0.7994 0.7834 0.7162

10000 4.439e-7 4.408e-5 0.0043 1.3435 1.2936 1.3011

50000 1.751e-8 1.763e-6 1.762e-4 5.6383 5.8812 5.7875

100000 5.831e-9 4.416e-7 4.407e-5 11.1615 11.1076 11.8971

500000 1.175e-8 3.162e-8 1.757e-6 53.2835 53.1815 53.4899
12

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

Fig. 7. Rough coefficient, loss of flux term and testing results for Example 1 when 𝜀 = 0.001.

Table 4

The relative error of FMPINN model VS various 𝛽 for Example 1.

𝛽 1 5 10 15 20 25

REL 3.31e-4 1.37e-4 9.27e-5 7.75e-5 6.40e-5 8.60e-5

Influence of hyper-parameter 𝛽: In the previous tests, the parameter 𝛽 was initially set to 10. Now, we study the influence of 𝛽 for
our FMPINN model. In these tests, we take 𝜀 = 0.001 in (23) and consider values of 𝛽 equal to 1, 5, 10, 15, 20 and 25, while keeping
all other parameters fixed. All models with different 𝛽 values are trained for 50000 epochs. Fig. 8 plots the results of flux loss for
the training process as well as the relative error for testing. Additionally, the final relative errors obtained from the tests are listed in
Table 4.

According to the above results in Fig. 8 and Table 4, it can be observed that the FMPINN model exhibits remarkable and stable
performance across different values of 𝛽. The performances of the FMPINN model for 𝛽 = 1 and 𝛽 = 5 are slightly weaker than that
of other cases. The loss of flux term is also stable and consistent with the trendlines of REL. Therefore, for the subsequent tests, we
will continue to set 𝛽 = 10.

Influence of the activation function for FMPINN: Now, we study the influence of the activation function for our proposed FMPINN
model to solve (1). In the test, the activation functions of the hidden layers (except the first layer and the last layer) for each
subnetwork in the FMPINN model are set as sin, tanh, requ, elu, gelu, relu, and leaky_relu, respectively, and the other setups are
13

identical to the above experiments. Based on the results in Table 5, we observe that the performance of 12 sin(𝑥) +
1
2 cos(𝑥) and gelu

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

Fig. 8. The loss of flux term VS training epoch and the relative error VS testing epoch for Example 1 when 𝜀 = 0.001.

Table 5

REL of FMPINN with different activation functions for solving Example 1 with 𝜀 = 0.01 and 𝜀 = 0.001.

𝜀 sin tanh 1
2
sin(𝑥) + 1

2
cos(𝑥) requ elu gelu relu leaky relu

0.1 0.0014 5.83e-6 2.92e-6 9.66e-4 2.33e-6 8.22e-6 5.52e-4 0.0019

0.01 0.99 1.52e-4 1.21e-6 0.0783 4.28e-4 4.11e-6 0.79 0.27

0.001 0.99 0.31 9.28e-5 0.337 0.339 0.338 0.94 0.34

Table 6

The REL and running time of FMPINN with different optimizers for Example 1 when 𝜖 = 0.01.

Optimizer SGD Moment Adam LBFGS Adam+LFGS LBFGS+Adam

REL 0.3449 0.3421 1.21e-6 0.0014 1.18e-6 8.96e-5

Time(s) 635.99 640.86 656.49 4624.38 1040.22 2705.12

are superior to that of others for our FMPINN model when 𝜀 = 0.1 and 𝜀 = 0.01, and their performance compete. However, the
FMPINN models with the above activation functions all failed in approximating the solution of multi-scale problem (1). Then, the
activation function 12 sin(𝑥) +

1
2 cos(𝑥) is an ideal candidate for our FMPINN model.

Influence of the optimizer for FMPINN: In the test, all models with different optimizers are trained for 50000 epochs. Except for the
original Adam optimizer for our FMPINN model, we further set the optimizer as SGD, Momentum, Adam, LBFGS, Adam+LBFGS, and
LBFGS+Adam, respectively, their setups are as follows:

• SGD: the corresponding setups are same as the Adam optimizer;

• Momentum: the initial learning rate and the decay schedule are the same as the Adam optimizer, its momentum is set as 0.5;

• LBFGS: the initial learning rate and the decay schedule are the same as the Adam optimizer, its max iteration, history size of the
change, and line search function are set as 500, 100, and strong Wolfe, respectively;

• Adam+LBFGS : the FMPINN model is trained using Adam with an initial learning rate of 0.01 for 40000 epochs, then trained
using LBFGS with an initial learning rate of 0.0001 for 10000 epochs. Their other setups are the same as the Adam and LBFGS
in this test;

• LBFGS+Adam : the FMPINN model is trained using LBFGS with an initial learning rate of 0.01 for 10000 epochs, then trained
using Adam with an initial learning rate of 0.001 for 40000 epochs. Their other setups are the same as the Adam and LBFGS in
this test.

The other setups are identical to the above experiments. Based on the results in Table 6 and Fig. 9, we find that FMPINN models
utilizing Adam and Adam+LBFGS optimizers outperform those employing other optimizers. Furthermore, the running time for
FMPINN models with Adam is less than that with Adam+LBFGS. Therefore, Adam appears to be an ideal candidate optimizer
for our FMPINN model.

Example 2. Let us attempt to solve the following three-scale problem with the Dirichlet boundary in Ω = [0, 1]. In which,

𝐴𝜀(𝑥) =
(
2 + cos

(
2𝜋 𝑥

𝜀1

))(
2 + cos

(
2𝜋 𝑥

𝜀2

))
14

with two small parameters 𝜀1, 𝜀2 > 0 such that 𝜀−11 , 𝜀−12 ∈ℕ+ and an exact solution is given by

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

Fig. 9. The REL curves for FMPINN model with different optimizers.

Table 7

The relative error and consumed time of FMPINN, MPINN, LDLM1,
and LDLM2 for Example 2.

Method FMPINN MPINN LDLM1 LDLM2

REL 3.36e-4 5.02e-2 0.5341 0.8372

H1ERR 0.0121 0.0423 0.965 0.989

Total time(s) 696.537 965.076 377.18 399.575

𝑢𝜀(𝑥) = 𝑥− 𝑥2 +
𝜀1
4𝜋

sin
(
2𝜋 𝑥

𝜀1

)
+

𝜀2
4𝜋

sin
(
2𝜋 𝑥

𝜀2

)
. (25)

Clearly, 𝑢𝜀(0) = 𝑢𝜀(1) = 0. One can obtain the force side after careful computation, we omit it here.

We solve the above three scale problems when 𝜀1 = 0.1 and 𝜀2 = 0.01 by employing the aforementioned FMPINN, MPINN, LDLM1,
and LDLM2 models, respectively. All settings are the same as the Example 1. The training dataset includes 3000 interior random
points and 500 boundary random points, and the testing dataset includes 1000 equidistant samples. The related experiment results
are listed in Table 7 and plotted in Fig. 10, respectively.

Fig. 10 shows that the FMPINN model still is well able to capture all oscillations of the exact solution for the three-scale problem,
the MPINN model also captures the profile of the solution of (1) with 𝜀1 = 0.1 and 𝜀2 = 0.01. However, the LDLM1 and LDLM2 all
fail to fit the solution. Figs. 10(d) – 10(g) not only show the point-wise errors of FMPINN for major points that are close to zero but
also reveal the point-wise error of FMPINN is very smaller than that of the MPINN and the LDLM models are all bad. Additionally,
Fig. 10(h) and Table 7 illustrate that the REL of FMPINN is superior to that of MPINN by more than two orders of magnitude, and
the former H1ERR is approximately one-quarter of the latter. In addition, its running time is 696.537 seconds and less than that of
MPINN.

From the above results, we conclude that the FMPINN model is remarkable to address the (1) with rough coefficient in one-

dimensional space, it generally outperforms the MPINN and LDLM models.

Example 3. We consider the following two-dimensional problem for (1) with Dirichlet boundary in regular domains Ω = [−1, 1] ×
[−1, 1]. In this example, we choose the 𝑓 (𝑥1, 𝑥2) = 5 and provide the following two-scales coefficient with scale separation

𝐴𝜀(𝑥1, 𝑥2) =
1.5 + sin(2𝜋𝑥1∕𝜀)
1.5 + sin(2𝜋𝑥2∕𝜀)

+
1.5 + sin(2𝜋𝑥2∕𝜀)
1.5 + cos(2𝜋𝑥1∕𝜀)

+ sin(4𝑥21𝑥
2
2) + 1, (26)

where 𝜀 > 0 is a small parameter such that 𝜀−1 ∈ ℕ+. Since the corresponding exact solution can not be expressed explicitly in this
example, then a reference solution 𝑢𝜀(𝑥1, 𝑥2) is set as the finite element solution computed by numerical homogenization method
[15] on a square grid [−1, 1] × [−1, 1] with mesh-size ℎ = 1∕128.

We solve the above two scale problems when 𝜀 = 0.05 by employing the aforementioned FMPINN, MPINN, LDLM1, and LDLM2
models, respectively. The size of the hidden layer for each subnetwork of FMPINN and MPINN is set as (40, 60, 40, 40, 40) and
the hidden layers’ size for LDLMs is set as (400, 250, 250, 200, 200). At each training step, the training dataset includes 5000 points
sampled inside the Ω and 2000 boundary points sampled from the 𝜕Ω, respectively. To test our models, the testing dataset is the
collection of all grid points in domain [−1, 1] × [−1, 1] with mesh-size ℎ = 1∕128. The related experiment results are listed in Table 8

and plotted in Fig. 11, respectively.

In this example, the 𝐴𝜀(𝑥1, 𝑥2) have two different frequency components and is quite oscillating (see Fig. 11(a)), then DNN will
encounter some troubles to address multi-scale PDEs (1). According to the results of point-wise error (Figs. 11(d) - 11(g)) and relative
errors (Fig. 11(h)), the performance of our FMPINN model is still superior to that of the MPINN, LDLM1 and LDLM2 models, and
can obtain a favorable approximation to multi-scale problems (1). In addition, the test REL curve in Fig. 11(h) indicates the FMPINN
15

model is stable in the whole training cycle and its tendency is consistent with the curve of loss for flux term in Fig. 11(c). The

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

Fig. 10. Rough coefficient, loss of flux term and testing results for Example 2 when 𝜀1 = 0.1 and 𝜀2 = 0.01.

Table 8

The relative error and consumed time of FMPINN, MPINN, LDLM1,
and LDLM2 for Example 3.

Method FMPINN MPINN LDLM1 LDLM2

REL 0.0139 0.99 0.2431 0.2401

Total time(s) 2098.258 3885.934 626.685 689.619

running time of our FMPINN model is about half of that of the MPINN model, which means the FMPINN model is efficient in solving
multi-scale PDEs (1) with two scales coefficient.

Example 4. We consider the following two-dimensional problem for (1) with Dirichlet boundary in regular domains Ω = [−1, 1] ×
[−1, 1]. In this example, we choose the 𝑓 (𝑥1, 𝑥2) = 1 and provide a multi-frequency coefficient

𝐴𝜀(𝑥1, 𝑥2) = Π5
𝑖=1

(
1 + 0.5cos

(
2𝑖𝜋(𝑥1 + 𝑥2)

))(
1 + 0.5 sin

(
2𝑖𝜋(𝑥2 − 3𝑥1)

))
. (27)

Same as the Example 3, a reference solution 𝑢𝜀(𝑥1, 𝑥2) is set as the finite element solution computed by numerical homogenization
16

method [15] on a square grid [−1, 1] × [−1, 1] with mesh-size ℎ = 1∕128.

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

Fig. 11. Rough coefficient, reference solution, loss of flux term and testing results for Example 3.

Table 9

The relative error and consumed time of FMPINN, MPINN, LDLM1,
and LDLM2 for Example 4.

Method FMPINN MPINN LDLM1 LDLM2

REL 0.0557 0.99 0.936 0.9127

Total time(s) 2013.258 3985.934 606.685 659.619

By meticulously implementing the previously mentioned FMPINN, MPINN, and LDLMs models with the specified setups, we
obtain the approximated solution of (1) with (27). The setup for all models is identical to that of Example 3. During each training
step, the training dataset comprises 5000 points randomly sampled from Ω and 2000 boundary points sampled from the boundary
𝜕Ω, respectively. Meantime, the testing dataset is composed of grid points on the square domain [−1, 1] × [−1, 1] with mesh size
ℎ = 1∕128. The related experiment results are listed in Table 9 and plotted in Fig. 12, respectively.

In this example, the 𝐴𝜀(𝑥1, 𝑥2) is oscillating with six different frequency components (seeing Fig. 12(a)), it will increase the
difficulty for DNN to address multi-scale PDEs (1). The point-wise error (Figs. 12(d) - 12(g)) and the relative errors (Fig. 12(h))
indicate that our FMPINN model is still favorable to capture the solution of multi-scale problems with complex multi-frequency
coefficient, but the MPINN, LDLM1, and LDLM2 models all performance poorly for approximating the solution of (1). Additionally,
17

the test REL curve in Fig. 12(h) and the curve of loss for flux term in Fig. 12(c) are all flat indicating the FMPINN model is stable

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

Fig. 12. Rough coefficient, reference solution, loss of flux term and testing results for Example 4.

in the whole training cycle. Moreover, the running time of our FMPINN model is less than that of the MPINN model in solving
multi-scale PDEs (1) for coefficient (27).

Example 5. We next study the performance of our FMPINN model to solve the elliptic equation (1) with Dirichlet boundary in a
cubic domain Ω = [0, 1] × [0, 1] × [0, 1] where we take

𝐴𝜀(𝑥1, 𝑥2, 𝑥3) = 2 + sin
(
2𝜋𝑥1
𝜀

)
sin

(
2𝜋𝑥2
𝜀

)
sin

(
2𝜋𝑥3
𝜀

)
, (28)

with a small parameter 𝜀 > 0 such that 𝜀−1 ∈ ℕ+. Also, we let the force side 𝑓 (𝑥1, 𝑥2, 𝑥3) = 20 and the boundary function
𝑔(𝑥1, 𝑥2, 𝑥3) = 0 on 𝜕Ω.

We utilize the FMPINN, MPINN, LDLM1, and LDLM2 models to approximate the solution of a three-dimensional multi-scale
problem (1) with rough coefficient (28) when 𝜀 = 0.1, the setups the four models are same as the Example 4. The training dataset
includes 7500 interior points and 1000 boundary points randomly sampled from Ω and 𝜕Ω, respectively. To facilitate the process, a
reference solution 𝑢𝜀(𝑥1, 𝑥2, 𝑥3) is established as the numerical solution obtained using the finite difference method on the domain
[0, 1] × [0, 1] × [0, 1] with a mesh-size ℎ = 1∕64. The test dataset is formed by including all grid points within the domain [0, 1] × [0, 1]
with a mesh size ℎ = 1∕64 while keeping the value of 𝑧 fixed at 0.3125. We list the total running time and REL in Table 10 and plot
18

the related results in Fig. 13.

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

Table 10

The relative error and running time of FMPINN, MPINN, LDLM1 and
LDLM2 for Example 5.

Method FMPINN MPINN LDLM1 LDLM2

REL 0.0071 0.0335 0.8048 0.5326

Total time(s) 5179.601 9271.072 1065.541 1195.233

Fig. 13. Rough coefficient, reference solution, loss of flux term and testing results for Example 5.

Based on the results in Fig. 13, we can see that our FMPINN model still outperforms the MPINN and LDLMs models for multi-scale
problems in three-dimensional space. The point-wise absolute error and the relative error of the former one are much smaller than
that of the latter three, the precision of FMPINN is very good with a small absolute point-wise error. Additionally, the REL curve
and the loss curve of the flux term are all flat in the later period of the training process, which means the performance of FMPINN is
stable. The running time of FMPINN is 5179.601 seconds and less than 3800 seconds than MPINN’s.

In addition, we list the H1ERR of our proposed FMPINN model for solving Examples 3 – 5 in the following Table 11. The results
show that our model can approximate the solution of multi-scale PDEs (1) with satisfactory accuracy.

Example 6. We consider the following eight-dimensional problem for (1) with Dirichlet boundary in regular domains Ω = [0, 1]8. In
19

which, we take

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

Table 11

The relative error of FMPINN in 𝐻1 norm for
Examples 3 – 5.

Example 3 4 5

H1ERR 0.0394 0.2711 0.0109

Fig. 14. Loss of flux term and testing results for Example 6.

𝐴(𝑥1, 𝑥2,⋯ , 𝑥8) = 1 + 1
8

[
cos(2𝜋𝑥1) + cos(4𝜋𝑥2) + cos(8𝜋𝑥3) + cos(16𝜋𝑥4)+

cos(16𝜋𝑥5) + cos(8𝜋𝑥6) + cos(4𝜋𝑥7) + cos(2𝜋𝑥8)
]
.

Meantime, an exact solution satisfied (1) is given by

𝑢(𝑥1, 𝑥2,⋯ , 𝑥8) =
8∏

𝑗=1
sin(𝜋𝑥𝑗).

The functions 𝑓 (𝑥1, 𝑥2, ⋯ , 𝑥8) in Ω and 𝑔(𝑥1, 𝑥2, ⋯ , 𝑥8) on 𝜕Ω are easy to obtain according to the rough coefficient and exact solution,
we omit them.

In this example, we only perform the FMPINN, LDLM1, and LDLM2 model to solve the (1) in eight-dimensional space, because
the huge computation requirement of MPINN has exceeded the limitation of memory for our station. The size of hidden layers for
each subnetwork of FMPINN is set as (60, 80, 60, 60, 60) and the hidden layers’ size for LDLM is set as (400, 500, 300, 300, 300). At
each training step, we construct the training dataset by sampling 20000 interior points inside the Ω and 5000 boundary points from
the 𝜕Ω. A testing dataset is given that includes 1600 random points distributed in Ω. The related experiment results are plotted in
Fig. 14 and listed in Table 12. Additionally, the point-wise error for the FMPINN model evaluated on 1600 sample points is projected
into a rectangular region with mesh size 40 ×40. Noting that the mapping is only aimed at visualizing, it is independent of the actual
coordinates of those points.

For an eight-dimensional problem, the FMPINN still can obtain a satisfactory solution for (1) with small point-wise absolute error
and relative error. However, the LDLM1 and LDLM2 both fail to approximate the solution of (1). Additionally, the loss of flux term
and overall REL show that the FMPINN model is also stable during the training process. The running time of LDLMs is less than that
20

of FMPINN in Table 12, but their performance is weaker than that of the latter.

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

Table 12

The relative error and running time of FMPINN, LDLM1
and LDLM2 for Example 6.

Method FMPINN LDLM1 LDLM2

REL 0.01378 0.5394 0.5054

Total time(s) 21035.011 1757.92 1942.742

6. Conclusion

Physics-informed neural networks (PINN) have gained significant popularity in solving both forward and inverse problems.
However, the normal PINN with a multi-scale DNN framework is unable to solve multiscale PDEs with rough coefficients. Inspired
by the mixed finite element method, this work designs a Fourier-based mixed PINN (dubbed FMPINN) by combining a dual (flux)
technique and Fourier decomposition to solve a class of elliptic multi-scale PDEs. By incorporating the loss of the flux term into
the loss function, our model achieves favorable stability and robustness. To handle multi-frequency contents, a Fourier activation
function has been used to address the input data transformed radially by different frequency factors, and a sub-network is designed
to match the target function, this strategy can improve the accuracy and convergence rate for the FMPINN method. Compared to
the previous works of PINN, this novel method skillfully casts the original problem into two first-order systems, it will overcome the
shortcomings of the computational burden for high-order derivatives in DNN and the ill-condition of neural tangent kernel matrix
resulting from the rough coefficient. Computational results show this novel method is feasible and efficient for solving this multi-

scale equation with an inhomogeneous coefficient in various dimensional spaces. In the future, we aim to extend this novel network
architecture, incorporating Fourier theory and lower-order mixed schemes, to tackle more complex multiscale problems.

CRediT authorship contribution statement

Xi’an Li: Conceptualization, Investigation, Methodology, Validation, Writing – original draft. Jinran Wu: Investigation, Writing
– review & editing. Xin Tai: Writing – review & editing. Jianhua Xu: Writing – review & editing. You-Gan Wang: Writing – review
& editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

The authors wish to thank Prof. Dr. Zhi-Qin John Xu for valuable suggestions that improved the quality of the paper. In addition,
the authors are grateful to the referees for their valuable comments and suggestions which helped to improve the presentation of the
paper. This study was supported by the National Key R&D Program of China (No. 2023YFF0717300).

References

[1] P. Ming, X. Yue, Numerical methods for multiscale elliptic problems, J. Comput. Phys. 214 (2006) 421–445.

[2] E. Weinan, P. Ming, P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Am. Math. Soc. 18 (2005) 121–156.

[3] R. Li, P. Ming, F. Tang, An efficient high order heterogeneous multiscale method for elliptic problems, Multiscale Model. Simul. 10 (2012) 259–283.

[4] A. Abdulle, G. Vilmart, Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems, Math. Comput. 83
(2014) 513–536.

[5] L. Durlofsky, Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media, Water Resour. Res. 27 (1991) 699–708.

[6] G. Allaire, R. Brizzi, A multiscale finite element method for numerical homogenization, Multiscale Model. Simul. 4 (2005) 790–812.

[7] F. Hellman, A. Målqvist, Numerical homogenization of elliptic pdes with similar coefficients, Multiscale Model. Simul. 17 (2019) 650–674.

[8] T.J.R. Hughes, G. Feijoo, L. Mazzei, J. Quincy, The variational multiscale method—a paradigm for computational mechanics, Comput. Methods Appl. Mech.
Eng. 166 (1998) 3–24.

[9] M.G. Larson, A. Målqvist, Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems, Comput.
Methods Appl. Mech. Eng. 196 (2007) 2313–2324.

[10] T. Arbogast, Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems, SIAM J. Numer. Anal. 42 (2004) 576–598 (electronic).

[11] Y. Efendiev, T. Hou, Multiscale Finite Element Methods: Theory and Applications, Springer, 2009.

[12] Z.M. Chen, T.Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comput. 72 (2003) 541–576.

[13] L. Berlyand, H. Owhadi, Flux norm approach to finite dimensional homogenization approximations with non-separated scales and high contrast, Arch. Ration.
Mech. Anal. 198 (2010) 677–721.
21

[14] H. Owhadi, L. Zhang, Homogenization of parabolic equations with a continuum of space and time scales, SIAM J. Numer. Anal. 46 (2007) 1–36.

http://refhub.elsevier.com/S0021-9991(24)00261-4/bib1E413159CFDB3E04AD937AB9B525CDEDs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib343F9E83D775DDD15116D1BD4B9E384Cs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibA9642039EC27CEB3ED9D8DF30796BB9Bs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibB07717ADA1970B9BD079A2AB02166FE7s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibB07717ADA1970B9BD079A2AB02166FE7s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib5B3A3D72AEDCD04645E60C9A69BD98DCs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib619A134C5ACB50C11C87F2E035D4F4EBs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib66F76C17350D7B0618547267AFA0D331s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib02CFA8BE269C138E1C7CB7FD0A9FB380s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib02CFA8BE269C138E1C7CB7FD0A9FB380s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib7F8E928DA5B6E3AB2D053892EE20FE4Bs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib7F8E928DA5B6E3AB2D053892EE20FE4Bs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib43133DF65C86F991AB7476EE2F228B01s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib515917E6B2D868BF2142A770D3844A15s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibB16A4675B12D481DB9A2A122485B4019s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib29E948E36D858B5D16A58D3A9484E3FBs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib29E948E36D858B5D16A58D3A9484E3FBs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibEF5380C8AA5D5521758C50EDEC74BCF3s1

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

[15] H. Owhadi, L. Zhang, L. Berlyand, Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization, ESAIM: Math. Model. Numer. Anal.
48 (2014) 517–552.

[16] Y. Efendiev, J. Galvis, T.Y. Hou, Generalized multiscale finite element methods (GMsFEM), J. Comput. Phys. 251 (2013) 116–135.

[17] E.T. Chung, Y. Efendiev, W.T. Leung, An adaptive generalized multiscale discontinuous Galerkin method for high-contrast flow problems, Multiscale Model.
Simul. 16 (2018) 1227–1257.

[18] E.T. Chung, Y. Efendiev, W.T. Leung, Residual-driven online generalized multiscale finite element methods, J. Comput. Phys. 302 (2015) 176–190.

[19] A. Målqvist, D. Peterseim, Localization of elliptic multiscale problems, Math. Comput. 83 (2014) 2583–2603.

[20] P. Henning, A. Målqvist, D. Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems, ESAIM: Math. Model. Numer. Anal. 48
(2014) 1331–1349.

[21] W. E, B. Yu, The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (2018) 1–12.

[22] J. Sirignano, K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1339–1364.

[23] R.T. Chen, Y. Rubanova, J. Bettencourt, D.K. Duvenaud, Neural ordinary differential equations, Adv. Neural Inf. Process. Syst. 31 (2018).

[24] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.

[25] Y. Khoo, L. Ying, SwitchNet: A neural network model for forward and inverse scattering problems, SIAM J. Sci. Comput. 41 (2019) A3182–A3201.

[26] Y. Zang, G. Bao, X. Ye, H. Zhou, Weak adversarial networks for high-dimensional partial differential equations, J. Comput. Phys. 411 (2020) 109409.

[27] L. Lyu, Z. Zhang, M. Chen, J. Chen, MIM: A deep mixed residual method for solving high-order partial differential equations, J. Comput. Phys. 452 (2022)
110930.

[28] A. Hauptmann, B. Cox, Deep learning in photoacoustic tomography: Current approaches and future directions, J. Biomed. Opt. 25 (2020) 112903.

[29] M. Dissanayake, N. Phan-Thien, Neural-network-based approximations for solving partial differential equations, Commun. Numer. Methods Eng. 10 (1994)
195–201.

[30] A.D. Jagtap, G.E. Karniadakis, Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning
framework for nonlinear partial differential equations, in: AAAI Spring Symposium: MLPS, 2021, pp. 2002–2041.

[31] A.D. Jagtap, E. Kharazmi, G.E. Karniadakis, Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward
and inverse problems, Comput. Methods Appl. Mech. Eng. 365 (2020) 113028.

[32] S. Lin, Y. Chen, A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions, J. Comput.
Phys. 457 (2022) 111053.

[33] J. Yu, L. Lu, X. Meng, G.E. Karniadakis, Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems, Comput. Methods Appl.
Mech. Eng. 393 (2022) 114823.

[34] J. Berg, K. Nyström, A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing 317 (2018)
28–41.

[35] L. Sun, H. Gao, S. Pan, J.-X. Wang, Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data, Comput. Methods
Appl. Mech. Eng. 361 (2020) 112732.

[36] L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, S.G. Johnson, Physics-informed neural networks with hard constraints for inverse design, SIAM J. Sci. Comput.
43 (2021) B1105–B1132.

[37] J. Yang, Q. Zhu, A local deep learning method for solving high order partial differential equations, Numer. Math., Theory Methods Appl. (2021).

[38] Z. Cai, J. Chen, M. Liu, X. Liu, Deep least-squares methods: An unsupervised learning-based numerical method for solving elliptic PDEs, J. Comput. Phys. 420
(2020) 109707.

[39] F.M. Bersetche, J.P. Borthagaray, A deep first-order system least squares method for solving elliptic PDEs, Comput. Math. Appl. 129 (2023) 136–150.

[40] Z.-Q.J. Xu, Y. Zhang, T. Luo, Y. Xiao, Z. Ma, Frequency principle: Fourier analysis sheds light on deep neural networks, Commun. Comput. Phys. 28 (2020)
1746–1767.

[41] N. Rahaman, D. Arpit, A. Baratin, F. Draxler, M. Lin, F.A. Hamprecht, Y. Bengio, A. Courville, On the spectral bias of deep neural networks, in: International
Conference on Machine Learning, 2019.

[42] Z. Liu, W. Cai, Z.-Q.J. Xu, Multi-scale deep neural network (MscaleDNN) for solving Poisson-Boltzmann equation in complex domains, Commun. Comput. Phys.
28 (2020) 1970–2001.

[43] B. Wang, W. Zhang, W. Cai, Multi-scale deep neural network (MscaleDNN) methods for oscillatory Stokes flows in complex domains, Commun. Comput. Phys.
28 (2020) 2139–2157.

[44] X.-A. Li, Z.-Q.J. Xu, L. Zhang, A multi-scale DNN algorithm for nonlinear elliptic equations with multiple scales, Commun. Comput. Phys. 28 (2020) 1886–1906.

[45] X.-A. Li, Z.-Q.J. Xu, L. Zhang, Subspace decomposition based DNN algorithm for elliptic type multi-scale PDEs, J. Comput. Phys. (2023) 112242.

[46] S. Wang, H. Wang, P. Perdikaris, On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural
networks, Comput. Methods Appl. Mech. Eng. 384 (2021) 113938.

[47] A. Jacot, F. Gabriel, C. Hongler, Neural tangent kernel: Convergence and generalization in neural networks, Adv. Neural Inf. Process. Syst. 31 (2018).

[48] A.A. Ramabathiran, P. Ramachandran, SPINN: Sparse, physics-based, and partially interpretable neural networks for PDEs, J. Comput. Phys. 445 (2021) 110600.

[49] S. Li, Y. Xia, Y. Liu, Q. Liao, A deep domain decomposition method based on Fourier features, J. Comput. Appl. Math. 423 (2023) 114963.

[50] M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J. Barron, R. Ng, Fourier features let networks learn high
frequency functions in low dimensional domains, Adv. Neural Inf. Process. Syst. 33 (2020) 7537–7547.

[51] J. Han, Y. Lee, Hierarchical learning to solve PDEs using physics-informed neural networks, in: International Conference on Computational Science, Springer,
2023, pp. 548–562.

[52] W.T. Leung, G. Lin, Z. Zhang, NH-PINN: Neural homogenization-based physics-informed neural network for multiscale problems, J. Comput. Phys. 470 (2022)
111539.

[53] S.P. Carney, A. Gangal, L. Kim, Physics informed neural networks for elliptic equations with oscillatory differential operators, arXiv preprint, arXiv :2212 .13531,
2022.

[54] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 770–778.

[55] D.P. Kingma, J.L. Ba, Adam: A method for stochastic optimization, in: ICLR 2015: International Conference on Learning Representations 2015, 2015.

[56] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res. 12 (2011).

[57] G. Hinton, N. Srivastava, K. Swersky, Neural networks for machine learning, Lecture 6a: Overview of mini-batch gradient descent, Dept. Comput. Sci. 14, 2012,
p. 2.

[58] M. Chen, R. Niu, W. Zheng, Adaptive multi-scale neural network with Resnet blocks for solving partial differential equations, Nonlinear Dyn. (2022) 1–20.

[59] R. Araya, C. Harder, D. Paredes, F. Valentin, Multiscale hybrid-mixed method, SIAM J. Numer. Anal. 51 (2013) 3505–3531.

[60] C.P. Robert, G. Casella, Monte Carlo Statistical Methods, 1999.

[61] K. Gu, P. Fang, Z. Sun, et al., Error analysis of mixed residual methods for elliptic equations, arXiv preprint, arXiv :2305 .06193, 2023.

[62] L. Li, X.-C. Tai, J. Yang, Q. Zhu, A priori error estimate of deep mixed residual method for elliptic PDEs, J. Sci. Comput. 98 (2024) 44.
22

[63] Z. Wang, M. Chen, J. Chen, Solving multiscale elliptic problems by sparse radial basis function neural networks, J. Comput. Phys. 492 (2023) 112452.

http://refhub.elsevier.com/S0021-9991(24)00261-4/bibD1ACA8AEEF3514465135052B11CBB96As1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibD1ACA8AEEF3514465135052B11CBB96As1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib9BC7C9F1A2BDC4AFBF24B7D7BA43FE2Bs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib1B962F984C19FF57D0D08FE222ACF6E3s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib1B962F984C19FF57D0D08FE222ACF6E3s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibACAAA2CB33857D07EF1DED31D23F1838s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib690CD848C870B82D7D4CC94DCD6BA896s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib0BA861D165736AE15130D110CFB9FE05s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib0BA861D165736AE15130D110CFB9FE05s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibBC8B230203B1F678195FD4EA18E38184s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib8B90E81BB28AC40F01D08933FA24746Es1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib75044DCECA97FD1B79C00596D122B9FBs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib659B5A388D5282F74FA24FF2C333B13Ds1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib0452E4C4BF947D1E2B46B31E62CDE9B7s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibA93CA28A59A159B8A6046445F568F3DAs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibA93CA28A59A159B8A6046445F568F3DAs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib1894ED2D84288E3C41DF37033EBB22E7s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib6F61703F07A2466167D962A6FB23EBEBs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib6F61703F07A2466167D962A6FB23EBEBs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib7CBDFC6A3E29D854E4B5D6B104191F93s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib7CBDFC6A3E29D854E4B5D6B104191F93s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibA47A98378B955D1F8C9FF9CA41DC086Fs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibA47A98378B955D1F8C9FF9CA41DC086Fs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib7E97131367A1CFD9C6BF34206ECAD1D8s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib7E97131367A1CFD9C6BF34206ECAD1D8s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib14EE26C1C2A652075755EDE8A82FF2B1s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib14EE26C1C2A652075755EDE8A82FF2B1s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibA0694D4AAA4FF2DE3105F80331C07300s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibA0694D4AAA4FF2DE3105F80331C07300s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib18CC3FD06F9626CCA249F5214AC12E03s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib18CC3FD06F9626CCA249F5214AC12E03s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib2244AF586A96EBC2E58AC5A7FAC0D7FBs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib2244AF586A96EBC2E58AC5A7FAC0D7FBs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib53196FF12494AC589B09F0B70E6152D4s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib34AFCB53734650090791025D0D7AC83Cs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib34AFCB53734650090791025D0D7AC83Cs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib8F34092AE8FD5881772FF065152A3D0Ds1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib29605FF82BE0412FD3E347D95C6F3D1Es1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib29605FF82BE0412FD3E347D95C6F3D1Es1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibEB465DAB4571EDEA0386966F2081D3E3s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibEB465DAB4571EDEA0386966F2081D3E3s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib3E2EBA2DF2836AD951AE30D105BF2930s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib3E2EBA2DF2836AD951AE30D105BF2930s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib49AA6501F153668C559BA9763C516967s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib49AA6501F153668C559BA9763C516967s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib065A42ED37C1B5BEB9910C013AE5A4D7s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib81F86A45FD9318739E0CC086BFB2E078s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib393FB69FE301B2E861B9BE144D9E73E3s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib393FB69FE301B2E861B9BE144D9E73E3s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib90E95CD3B761EB393A3824250B81DBC9s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib984EC6A29EFEEA6E584D84E52E13B33Es1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib9BBD40DD403ED9297308B9D2443402CAs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibC3DAC57E659C78EB917A801E288BB22Es1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibC3DAC57E659C78EB917A801E288BB22Es1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib17AF56468D5F1DA427373A34D6070ED2s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib17AF56468D5F1DA427373A34D6070ED2s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibD9316A7D449E076AEF3791FB2C056FA0s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibD9316A7D449E076AEF3791FB2C056FA0s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib30CD5840D5727DF544017D7D7DE06D72s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib30CD5840D5727DF544017D7D7DE06D72s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib1159C580214BA145EFEFCE903CCC1A58s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib1159C580214BA145EFEFCE903CCC1A58s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib566630EB6CDD84DFD3D3DDBC9663FCF2s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibEBB06589CCF65E8A268F59FFC834F0B5s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib2FCAB8BE18E0875E7E996B9AA50C8133s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib2FCAB8BE18E0875E7E996B9AA50C8133s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib68FE4C75F214C6961FFC5BD28AB6566Es1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibD69BF04E053EEA59CACAC81DAFCBD77Bs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib010EB14314D53F8EF4F8A0982319D70Cs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibDD61DE77369721C05A69F4DB235D1FD9s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib8D22AC663F96AC7E8CF9D1907E944A1Fs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib9E1235E116B07BC12003199AB1DFA78Bs1

Journal of Computational Physics 508 (2024) 113012X. Li, J. Wu, X. Tai et al.

[64] J. Chen, X. Chi, Z. Yang, Bridging traditional and machine learning-based algorithms for solving PDEs: The random feature method, J. Mach. Learn. 1 (2022)
268–298.

[65] S. Ding, X. Xu, R. Nie, Extreme learning machine and its applications, Neural Comput. Appl. 25 (2014) 549–556.

[66] F. Calabrò, G. Fabiani, C. Siettos, Extreme learning machine collocation for the numerical solution of elliptic PDEs with sharp gradients, Comput. Methods Appl.
Mech. Eng. 387 (2021) 114188.

[67] Z. Xiang, W. Peng, W. Zhou, W. Yao, Hybrid finite difference with the physics-informed neural network for solving PDE in complex geometries, arXiv preprint,
arXiv :2202 .07926, 2022.

[68] F.A. Viana, A tutorial on Latin hypercube design of experiments, Qual. Reliab. Eng. Int. 32 (2016) 1975–1985.

[69] J. Shaw, A quasirandom approach to integration in Bayesian statistics, Ann. Stat. (1988) 895–914.

[70] M.B. Giles, Multilevel Monte Carlo methods, Acta Numer. 24 (2015) 259–328.
23

[71] G. Yuan, X. Lu, An active set limited memory BFGS algorithm for bound constrained optimization, Appl. Math. Model. 35 (2011) 3561–3573.

http://refhub.elsevier.com/S0021-9991(24)00261-4/bib14595E2997BCBFD8943A0F6D656EF0B8s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib14595E2997BCBFD8943A0F6D656EF0B8s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib8DC5FD10D03F4201EC9C1916A66728A8s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib3A46A8634660A558AEC7DC876D1DCE37s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib3A46A8634660A558AEC7DC876D1DCE37s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibC35100067B991EC325280BE2B83FDA85s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibC35100067B991EC325280BE2B83FDA85s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibE12DB39D632F35B2974716AEF6CD624Cs1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibE06248532B2A99D75FD1C59F0F46646As1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bibAB8A6EA9D8E91966863076D70D32D755s1
http://refhub.elsevier.com/S0021-9991(24)00261-4/bib59A0DFE69E41C94505BF6663FDC460C5s1

	Solving a class of multi-scale elliptic PDEs by Fourier-based mixed physics informed neural networks
	1 Introduction
	2 Multi-scale physics informed neural networks
	2.1 Multi-scale deep neural networks with ResNet technique
	2.2 Overview of physics-informed neural networks

	3 Fourier-based mixed PINN to solve multi-scale problem
	3.1 Failure of classical PINN
	3.2 Unified architecture of FMPINN
	3.3 Option of activation function for FMPINN and its explanation
	3.4 Simple error analysis for FMPINN

	4 FMPINN algorithm
	5 Numerical experiments
	5.1 Model and training setup
	5.2 Performance of FMPINN for solving multi-scale elliptic PDEs

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

