
Journal of Computational Physics 508 (2024) 113012

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Solving a class of multi-scale elliptic PDEs by Fourier-based mixed 

physics informed neural networks

Xi’an Li a, Jinran Wu b,∗, Xin Tai a, Jianhua Xu c, You-Gan Wang d

a Ceyear Technologies Co., Ltd, Qingdao 266555, China
b Australian Catholic University, Brisbane 4000, Australia
c The 41st Institute of China Electronics Technology Group Corporation, Qingdao, 266555, China
d The University of Queensland, St Lucia 4067, Australia

A R T I C L E I N F O A B S T R A C T

Keywords:

Multi-scale

Rough coefficient

FMPINN

Fourier feature mapping

Flux variable

Reduce order

Deep neural networks have garnered widespread attention due to their simplicity and flexibility 
in the fields of engineering and scientific calculation. In this study, we probe into solving a 
class of elliptic partial differential equations (PDEs) with multiple scales by utilizing Fourier-

based mixed physics informed neural networks (dubbed FMPINN), its solver is configured as a 
multi-scale deep neural network. In contrast to the classical PINN method, a dual (flux) variable 
about the rough coefficient of PDEs is introduced to avoid the ill-condition of neural tangent 
kernel matrix caused by the oscillating coefficient of multi-scale PDEs. Therefore, apart from the 
physical conservation laws, the discrepancy between the auxiliary variables and the gradients of 
multi-scale coefficients is incorporated into the cost function, obtaining a satisfactory solution 
of PDEs by minimizing the defined loss through some optimization methods. Additionally, a 
trigonometric activation function is introduced for FMPINN, which is suited for representing the 
derivatives of complex target functions. Handling the input data by Fourier feature mapping 
will effectively improve the capacity of deep neural networks to solve high-frequency problems. 
Finally, to validate the efficiency and robustness of the proposed FMPINN algorithm, we present 
several numerical examples of multi-scale problems in various dimensional Euclidean spaces. 
These examples cover low-frequency and high-frequency oscillation cases, demonstrating the 
effectiveness of our approach. All code and data accompanying this manuscript will be publicly 
available at https://github.com/Blue-Giant/FMPINN.

1. Introduction

Multi-scale problems, governed by partial differential equations (PDEs) with multiple scales, are prevalent in diverse scientific 
and engineering fields like reservoir simulation, high-frequency scattering, and turbulence modeling. This paper focuses on solving 
the following type of multi-scale problem:
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⎧⎪⎨⎪⎩
−div

(
𝐴𝜀(𝒙)∇𝑢𝜀(𝒙)

)
= 𝑓 (𝒙), 𝒙 ∈Ω,

𝑢𝜀(𝒙) = 𝑔(𝒙), 𝒙 ∈ 𝜕Ω,

(1)

where Ω is a bounded subset of ℝ𝑑(𝑑 = 1, 2, 3, …) with piecewise Lipschitz boundary and satisfies the interior cone condition, 𝜀 is 
a small positive parameter that signifies explicitly the multiscale nature of the rough coefficient 𝐴𝜀(𝒙).  is a boundary operator in 
𝜕Ω that imposes the boundary condition of 𝑢𝜀, such as Dirichlet, Neumman and Robin. ∇ and div are the gradient and divergence 
operators, respectively. 𝑓 (𝒙) ∈ 𝐿2(Ω) is a given function. In addition, 𝐴𝜀(𝒙) is symmetric and uniformly elliptic on Ω. It means that 
all eigenvalues of 𝐴𝜀 are uniformly bounded by two strictly positive constants 𝜆min(𝐴𝜀) and 𝜆max(𝐴𝜀). In other word, for all 𝒙 ∈ Ω
and 𝝃 ∈ℝ𝑑 , we have

𝜆min(𝐴𝜀)|𝝃|2 ⩽ 𝝃𝑇 𝐴𝜀(𝒙)𝝃 ⩽ 𝜆max(𝐴𝜀)|𝝃|2. (2)

The multi-scale problem (1) frequently arises in the fields of physical simulations and engineering applications, including the study 
of flow in porous media and the analysis of mechanical properties in composite materials [1–3]. Generally, the analytical solutions 
of (1) are seldom available, so solving numerically this problem through approximation methods is necessary. Lots of numerical 
methods focus on efficient, accurate and stable numerical schemes have gained favorable achievement, such as heterogeneous multi-

scale methods [2–4], numerical homogenization [5–7], variational multi-scale methods [8,9], multi-scale finite element methods [10–

12], flux norm homogenization [13,14], rough polyharmonic splines (RPS) [15], generalized multi-scale finite element methods 
[16–18], localized orthogonal decomposition [19,20], etc. In contrast to standard numerical methods including FEM and FDM, they 
alleviate substantially the computational complexity in handling all relevant scales, improve the numerical stabilities and expedite 
the convergence. However, they still will encounter the curse of complex domain and dimensionality in general.

Deep neural networks (DNN), an efficient meshfree method without the discretization for a given interested domain, have drawn 
more and more attention from researchers to solve numerically the ordinary and partial differential equations as well as the inverse 
problems for complex geometrical domain and high-dimensional cases [21–27], due to their extraordinary universal approximation 
capacity [28]. Among these methods, the physics-informed neural networks (PINN) dating back to the early 1990s again attracted 
widespread attention of researchers and have made remarkable achievements for approximating the solution of PDEs by embrac-

ing the physical laws with neural networks, on account of the rapid development of computer science and technology [24,29]. 
This method skillfully incorporates the residual of governing equations and the discrepancy of boundary/initial constraints, then 
formulates a cost function that can be optimized easily via the automatic differentiation in DNN. Many efforts have been made to 
further enhance the performance of PINN are concluded as two aspects: refining the selection of the residual term and designing the 
manner of initial/boundary constraints. In terms of the residual term, there are XPINN [30], cPINN [31], two-stage PINN [32] and 
gPINN [33], and so on. By subtly encoding the I/B constraints into DNN in a hard manner, the PINN can be easy to train with low 
computational complexity and obtain a high-precision solution of PDEs with complex boundary conditions [34–36]. Motivated by 
the reduction of order in conventional methods [12], some attempts have been made to solve the high-order PDEs by reframing them 
as some first-order systems, this will overcome the shortcomings of the computational burden for high-order derivatives in DNN. For 
example, the deep mixed residual method [27], the local deep learning method [37] and the deep FOSLS method [38,39].

Many studies and experiments have indicated that the general DNN-based algorithms are commonly used to solve a low-frequency 
problem in varying dimensional space, but will encounter tremendous challenges for high-frequency problems such as multi-scale 
PDEs (1). The frequency principle (F-principle) [40] or spectral bias [41] of DNN shows that neural networks are typically efficient for 
fitting objective functions with low-frequency modes but inefficient for high-frequency functions. Then, a series of multi-scale DNN 
(MscaleDNN) models were proposed to overcome the shortcomings of normal DNN for high-frequency problems by converting high-

frequency contents into low-frequency ones via a radial scale technique [42–45]. After that, some corresponding mechanisms were 
developed to explain this performance of DNN, such as the Neural Tangent Kernel (NTK) [46,47]. Furthermore, many researchers 
attempted to utilize a Fourier feature mapping consisting of sine and cosine to improve the capacity of MscaleDNN, which will 
alleviate the pathology of spectral bias and let neural networks capture high frequencies component effectively [45,46,48–51].

Recently, some works [52,53] have shown that general PINN architecture is unable to capture the multi-scale property of the 
solution due to the effect of rough coefficient in multi-scale PDEs. Leung et al. [52] proposed a Neural homogenization-based PINN 
(NH-PINN) method to solve (1), it can well overcome the unconvergence of PINN for multi-scale problems. However, NH-PINN also 
will encounter the dilemma of dimensional and the burden of computation, because it will convert one low-dimensional problem 
into a high-dimensional case. By carefully analyzing the NTK matrix associated with the PINN, Carney et al. [53] found that the 
Forbenius norm of the NTK matrix will become unbound as the oscillation factor 𝜀 in 𝐴𝜀 tends to zero. It means that the evolution 
of residual loss term in PINN will become increasingly stiff as 𝜀 → 0, then lead to poor training behavior for PINN.

In this paper, a Fourier-based multi-scale mixed PINN (FMPINN) structure is proposed to solve the multi-scale problems (1) with 
rough coefficients. This method consists of the general PINN architecture and the aforementioned MscaleDNN model with subnet-

works being used to capture different frequency components. To overcome the weakness of the normal PINN that failed to capture 
the jumping gradient information of the oscillating coefficient when tackling the governed equation in multi-scale PDEs (1), a (dual) 
flux variable is introduced to alleviate the adverse effect of the rough coefficient. Meantime, it can also reduce the computational 
burden of PINN for the second-order derivatives of space variables. In addition, the Fourier feature mapping is used in our model to 
learn each target frequency efficiently and express the derivatives of multi-frequency functions easily, it will remarkably improve the 
capacity for our FMPINN model to solve multi-scale problems. In a nutshell, the primary contributions of this paper are summarized 
2

as follows:
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1. We propose a novel neural networks approach by combining normal PINN and MscaleDNN with subnetworks structure to address 
multi-scale problems, leveraging the Fourier theorem and the F-principle of DNN.

2. Inspired by the reduced order scheme for high-order PDEs, a dual (flux) variable about the rough coefficient of multi-scale PDEs 
is introduced to address the gradient leakage about the rough coefficient for PINN.

3. By introducing some numerical experiments, we show that the classical PINN method with MscaleDNN solver is still insufficient 
in providing accurate solutions for multi-scale equations.

4. We showcase the exceptional performance of FMPINN in solving a class of multi-scale elliptic PDEs with essential boundaries in 
various dimensional spaces. Our method outperforms existing approaches and demonstrates its superiority in addressing these 
complex problems.

The remaining parts of our work are organized as follows. In Section 2, we briefly introduce the underlying conceptions and 
formulations for MscaleDNN and the structure of PINN. Section 3 provides a unified architecture of the FMPINN to solve the elliptic 
multi-scale problem (1) based on its equivalent reduced order scheme, and gives the option of activation function as well as the 
error analysis of our proposed method. Section 4 details the FMPINN algorithm for approximating the solution of elliptic PDEs with 
multiple scales. In Section 5, some scenarios of multi-scale PDEs are performed to evaluate the feasibility and effectiveness of our 
proposed method. Finally, some conclusions of this paper are made in Section 6.

2. Multi-scale physics informed neural networks

2.1. Multi-scale deep neural networks with ResNet technique

The basic concept and formulation of DNN are described briefly in this section, which helps audiences understand the DNN 
structure through functional terminology. Mathematically, a DNN defines the following mapping

 ∶ 𝒙 ∈ℝ𝑑 ⟹ 𝒚 =  (𝑥) ∈ℝ𝑐 , (3)

with 𝑑 and 𝑐 being the dimensions of input and output, respectively. The DNN functional  is a nested composition of the following 
single-layer neural unit:

𝒚 = {𝑦1, 𝑦2,⋯ , 𝑦𝑚} and 𝑦𝑙 = 𝜎

(
𝑑∑

𝑛=1
𝑤𝑙𝑛 ∗ 𝑥𝑛 + 𝑏𝑙

)
, (4)

where 𝑤𝑙𝑛 and 𝑏𝑙 are called weight and bias of 𝑙𝑡ℎ neuron, respectively. 𝜎(⋅) is an element-wise non-linear operator, generally referred 
to as the activation function. Then, we have the following formulation of DNN:

𝒚[𝓁] = 𝜎◦(𝑾 [𝓁]𝒚[𝓁−1] + 𝒃[𝓁]), for 𝓁 = 1,2,3,⋯⋯ ,𝐿, (5)

and 𝒚[0] = 𝒙, where 𝑾 [𝓁] ∈ ℝ𝑛𝓁+1×𝑛𝓁 , 𝒃[𝓁] ∈ ℝ𝑛𝓁+1 stand for the weight matrix and bias vector of 𝓁-th hidden layer, respectively, 
𝑛0 = 𝑑 and 𝑛𝐿+1 is the dimension of output, and “◦” stands for the elementary-wise operation. For convenience, the output of DNN 
is denoted by 𝒚(𝒙; 𝜽) with 𝜽 standing for its all weights and biases.

Residual neural network (ResNet) [54] as a common skillful technique by introducing skip connections between adjacent or 
nonadjacent hidden layers can overcome effectively the vanishing gradient of parameters in the backpropagation for DNN, then 
make the network much easier to train and improve well the performance of DNN. Many experiment results showed that the ResNet 
can also improve the performance of DNN to approximate high-order derivatives and solutions of PDEs [21,27]. We utilize the one-

step skip connection scheme of ResNet in this work. Except for the normal data flow, the data will also flow along with the skip 
connection if the two consecutive layers in DNN have the same number of neurons, otherwise, the data flows directly from one to 
the next layer. The filtered 𝒚[𝓁+1](𝒙; 𝜽) produced by the input 𝒚[𝓁](𝒙; 𝜽) is expressed as

𝒚[𝓁+1](𝒙;𝜽) = 𝒚[𝓁](𝒙;𝜽) + 𝜎◦
(
𝑾 [𝓁+1]𝒚[𝓁](𝒙;𝜽) + 𝒃[𝓁+1]

)
.

As we are aware, a normal DNN model is capable of providing a satisfactory solution for general problems. However, it will en-

counter troublesome difficulty in solving multi-scale problems with high-frequency components. Recently, a MscaleDNN architecture 
has shown its remarkable performance in dealing with high-frequency problems by converting original data to a low-frequency space 
[42–44,46]. A schematic diagram of MscaleDNN with 𝑄 subnetworks is depicted in Fig. 1.

The detailed procedure of MscaleDNN is described in the following.

1. Generating a scale vector or matrix with 𝑄 parts

Λ = (𝒌1,𝒌2,𝒌3⋯ ,𝒌𝑄−1,𝒌𝑄)𝑇 , (6)

where 𝒌𝑖(𝑖 = 1, 2, … , 𝑄) is a scalar or matrix (trainable or untrainable).

2. Converting the input data 𝒙 into 𝒙̃ = Λ ⊙𝒙 with ⊙ being the Hadamard product, then feeding 𝒙̃ into the pipeline of MscaleDNN. 
3

It is
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Fig. 1. A schematic diagram of MscaleDNN with 𝑄 subnetworks, 𝜎 stands for the activation function.

{
𝒙̂ = 𝒌𝑖𝒙
𝑭 𝑖(𝒙) =  𝑖 (𝒙̂)

𝑖 = 1,2,… ,𝑄, (7)

where  𝑖 stands for the 𝑖𝑡ℎ fully connected subnetwork and 𝑭 𝑖 is its output.

3. Obtaining the result of MscaleDNN by aggregating linearly the output of all subnetworks, each scale input goes through a 
subnetwork. It is

𝑵𝑵(𝒙) =𝑾 𝑂 ⋅
[
𝑭 1(𝒙),𝑭 2(𝒙),⋯ ,𝑭𝑄(𝒙)

]
+ 𝒃𝑂, (8)

where 𝑾 𝑂 and 𝒃𝑂 stand for the weights and biases of the last linear layer, respectively.

From the perspective of Fourier transformation and decomposition, the first layer of the MscaleDNN model will be treated as a series 
of basis in Fourier space and its output is the combination of those basis functions [42,44,46].

2.2. Overview of physics-informed neural networks

In the scope of PINN, a type of PDE governed by parameters as the toy to show its implementation, it is

𝝀[𝑢̂(𝒙)] = 𝑓 (𝒙), 𝒙 ∈Ω,

𝑢̂ (𝒙) = 𝑔̂(𝒙), 𝒙 ∈ 𝜕Ω,
(9)

in which 𝝀 stands for the linear or nonlinear differential operator with parameters 𝝀,  is the boundary operator, such as Dirichlet, 
Neumann, periodic boundary conditions, or a mixed form of them. Ω and 𝜕Ω respectively illustrate the domain of interest and its 
boundary. For approximating the solution of the multi-scale PDEs, a multi-scale deep neural network 𝑢𝑁𝑁 is used. In classical PINN, 
the ideal parameters of the DNN can be obtained by minimizing the following composite loss function

𝐿𝑜𝑠𝑠(𝐼 ,𝐵 ;𝜽) =𝐿𝑜𝑠𝑠𝑅(𝐼 ;𝜽) + 𝛾𝐿𝑜𝑠𝑠𝐵(𝐵 ;𝜽) (10)

with

𝐿𝑜𝑠𝑠𝑅(𝐼 ;𝜽) =
1

𝑁𝑅

𝑁𝑅∑
𝑖=1

‖‖‖𝝀[𝑢𝑁𝑁 (𝒙𝑖
𝐼
,𝜽)] − 𝑓 (𝒙𝑖

𝐼
)‖‖‖2 ,

𝐿𝑜𝑠𝑠 ( ;𝜽) = 1
𝑁𝐵∑‖‖𝑢 (

𝒙
𝑗
,𝜽
)
− 𝑔̂(𝒙𝑗 )

‖‖2, (11)
4

𝐵 𝐵 𝑁𝐵 𝑗=1
‖‖ 𝑁𝑁 𝐵 𝐵 ‖‖
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where 𝛾 > 0 is used to control the contribution for the corresponding loss term. 𝐿𝑜𝑠𝑠𝑅 and 𝐿𝑜𝑠𝑠𝐵 depict the residual of the governing 
equations and the loss on the boundary condition, respectively. If some additional observed data are available inside the interested 
domain, then a loss term indicating the mismatch between the predictions produced by DNN and the observations can be taken into 
account

𝐿𝑜𝑠𝑠𝐷 = 1
𝑁𝐷

𝑁𝐷∑
𝑖=1

‖‖‖‖𝑢𝑁𝑁 (𝒙𝑖,𝜽) − 𝑢𝑖
𝐷𝑎𝑡𝑎

‖‖‖‖2. (12)

Finally, the solution of PDEs is cast into the optimization of DNN. To obtain the ideal 𝜽∗, one can update the weights and biases of 
DNN through the optimization methods such as gradient descent (GD), stochastic gradient descent (SGD) and the improved versions 
of SGD including Adam [55], Adagrad [56] and RMSprop [57] during the training process. In this context, the SGD method with a 
“one-batch” of training data is given by:

𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝑘∇𝜽𝑘𝐿𝑜𝑠𝑠(𝒙;𝜽
𝑘) with 𝒙 ∈ 𝐼 or 𝒙 ∈ 𝐵 (13)

where the “learning rate” 𝛼𝑘 decreases with 𝑘 increasing.

3. Fourier-based mixed PINN to solve multi-scale problem

In this section, the unified architecture of FMPINN is proposed to overcome the adverse effect of derivative for rough coefficient 
𝐴𝜀 by embracing a multi-output neural network with an equivalent reduced-order formulation of the multi-scale problem (1).

3.1. Failure of classical PINN

Despite the success of various PINN models in studying ordinary and partial differential equations, it has been observed in Leung 
et al. [52] that the classical PINN approach fails to provide accurate predictions for multi-scale PDEs (1). Furthermore, we find that a 
direct application of the PINN with MscaleDNN framework on solving (1) still cannot provide a satisfactory solution, because of the 
ill-posed NTK matrix caused by rough coefficient 𝐴𝜀. For example, let us consider the following one-dimensional elliptic equation 
with a homogeneous Dirichlet boundary in Ω = [0, 1]:⎧⎪⎨⎪⎩

− 𝑑

𝑑𝑥

(
𝐴𝜀(𝑥) 𝑑

𝑑𝑥
𝑢𝜀(𝑥)

)
= 5cos(𝜋𝑥),

𝑢𝜀(0) = 𝑢𝜀(1) = 0,

in which 𝐴𝜀(𝑥) = 1 + 𝑥2

2 + sin(2𝜋𝑥∕𝜀)
with 𝜀 > 0 being a small constant.

We employ the classical PINN method with the MscaleDNN framework (see Fig. 1) to solve (1), called this method as 
MPINN. The scale factors Λ for MscaleDNN is set as (1, 2, 3, 4, 5, 10, ⋯ , 90, 95, 100) and the size of each subnetwork is chosen as 
(1, 30, 40, 30, 30, 30, 1). The activation function of the first hidden layer for all subnetworks is set as Fourier feature mapping (see 
Section 3.3) and the other activation functions (except for their output layer) are chosen as 12 sin(𝑥) +

1
2 cos(𝑥) [58], their output 

layers are all linear. For 𝜀 = 1
32 , 

1
64 and 1

128 , we train the aforementioned MPINN model for 50000 epochs and conduct testing every 
1000 epochs within the training cycle. The optimizer is set as Adam with an initial learning rate of 0.01 and the learning rate will 
decay by 2.5% for every 100 epochs. Finally, the results are demonstrated in Fig. 2.

As 𝜀 = 1∕32, the coefficient 𝐴𝜀(𝑥) possesses a little multi-scale information, and the MPINN performs quite well. However, the 
permeability 𝐴𝜀(𝑥) will exhibit various multi-scale properties for 𝜀 = 1∕64, the performance of MPINN deteriorates with a low relative 
error and the MPINN fails to converge for 𝜀 = 1∕128. In addition, we perform the MPINN with different setups of the hyperparameters 
such as the learning rate and the 𝛾 for 𝐿𝑜𝑠𝑠𝐵 in (10) as well as the network size, but we still cannot obtain a satisfactory result.

3.2. Unified architecture of FMPINN

Based on the above observation, it is necessary to seek some extra techniques to improve the accuracy of the PINN. Inspired 
by the mixed finite element method [12,59] and the mixed residual method [27], we can leverage a mixed scheme to solve (1)

by replacing the flux term 𝐴𝜀∇𝑢 in (1) with an auxiliary variable. This strategy not only can avoid the unfavorable effect of the 
oscillating coefficient 𝐴𝜀, but also can reduce the computation burden of second-order derivatives in cost function when utilizing a 
MscaleDNN to approximate the solution of (1). Therefore, we introduce a flux variable 𝝓(𝒙) =

(
𝜙1(𝒙), … , 𝜙𝑑 (𝒙)

)
=𝐴𝜀(𝒙)∇𝑢𝜀(𝒙) and 

rewrite the first equation in (1) as the following expressions:

− 𝐝𝐢𝐯𝝓(𝒙) = 𝑓 (𝒙),

𝝓(𝒙) −𝐴𝜀(𝒙)∇𝑢𝜀(𝒙) = 𝟎.
(14)

Then we turn to search a couple of functions (𝑢𝜀, 𝝓) in admissible space with 𝑢𝜀 satisfying the prescribed boundary condition, 
rather than approximating a unique solution of the original problem (1). Here and thereafter, (𝑢𝜀, 𝝓) ∈ =1(Ω) ×(𝐝𝐢𝐯; Ω) with { } { }
5

1(Ω) = 𝑣 ∈𝐿2(Ω) ∶ ∇𝑣 ∈𝐿2(Ω) and (𝐝𝐢𝐯; Ω) = 𝝍 ∈ [𝐿2(Ω)]𝑑 ∶ 𝐝𝐢𝐯𝝍 ∈𝐿2(Ω) .
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Fig. 2. Left: the rough coefficient 𝐴𝜀 . Middle: the MPINN approximated solution vs the reference solution. Right: 𝑙2 relative error varies with the testing epoch. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

When utilizing numerical solvers to address the equation (14), one can obtain the optimum solution by minimizing the following 
least-squares formula in the domain Ω:

𝑢∗,𝝓∗ = argmin
(𝑢𝜀,𝝓)∈1(Ω)×(𝐝𝐢𝐯;Ω)

(𝑢𝜀,𝝓) (15)

with

(𝑢𝜀,𝝓) = ∫
Ω

|||− 𝐝𝐢𝐯𝝓(𝒙) − 𝑓 (𝒙)|||2𝑑𝒙+ 𝛽 ∫
Ω

|||𝝓(𝒙) −𝐴𝜀(𝒙)∇𝑢𝜀(𝒙)|||2𝑑𝒙, (16)

where 𝛽 > 0 is used to adjust the approximation error of the flux variable and flux term, and 𝑢𝜀 is coercive on the boundary of the 
domain, such as the Dirichlet boundary conditions for the case of a second-order elliptic problem.

Generally, two independent neural networks are necessary to approximate the flux variable 𝝓 and solution 𝑢, but 𝝓 is uncon-

strained without any coercive boundary condition. Based on the potentiality of DNN for approximating any linear and non-linear 
complex functions, we take a DNN with multi outputs to model ansatzes 𝝓 and 𝑢, denoted by 𝝓𝑁𝑁 and 𝑢𝑁𝑁 , respectively.

Fig. 3 describes the multi-output neural network for an input 𝒙 ∈ℝ2.

Once the expressions of auxiliary functions 𝝓 and solution 𝑢𝜀 have been determined, we can discretize (16) by the Monte Carlo 
method [60], then employ the PINN conception and obtain the following form

|Ω| 𝑁𝑖𝑛∑[| 𝑖 𝑖 |2 | 𝑖 𝜀 𝑖 𝑖 |2]

6

ℒ𝑖𝑛(𝑆𝐼 ;𝜽) = 𝑁𝑖𝑛 𝑖=1
||− div𝝓𝑁𝑁 (𝒙

𝐼
;𝜽) − 𝑓 (𝒙

𝐼
)|| + 𝛽||𝝓𝑁𝑁 (𝒙

𝐼
,𝜽) −𝐴 (𝒙

𝐼
)∇𝑢𝑁𝑁 (𝒙

𝐼
,𝜽)|| , (17)
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Fig. 3. The multi-output neural network for approximating the state and flux variables.

for 𝒙𝑖
𝐼
∈ 𝑆𝐼 , here and hereinafter 𝑆𝐼 stands for the collection sampled from Ω with prescribed probability density.

Same to the traditional numerical methods such as FDM and FEM for addressing PDEs, boundary conditions play a crucial 
role in DNN representation as well. They serve as important constraints that ensure the uniqueness and accuracy of the solution. 
Consequently, the output 𝑢𝑁𝑁 of DNN should also satisfy the boundary conditions of (1), which means

ℒ𝑏𝑑 (𝑆𝐵 ;𝜽) =
1

𝑁𝑏𝑑

𝑁𝑏𝑑∑
𝑗=1

[
𝑢𝑁𝑁

(
𝒙
𝑗

𝐵
;𝜽
)
− 𝑔(𝒙𝑗

𝐵
)
]2

→ 0 for 𝒙
𝑗

𝐵
∈ 𝑆𝐵, (18)

here and hereinafter 𝑆𝐵 represents the collection sampled on 𝜕Ω with prescribed probability density.

According to the above results, the weights and biases of the DNN model are updated by optimizing gradually the following cost 
function:

ℒ(𝑆𝐼 ,𝑆𝐵 ;𝜽) =ℒ𝑖𝑛(𝑆𝐼 ;𝜽) + 𝛾ℒ𝑏𝑑 (𝑆𝐵 ;𝜽), (19)

where 𝑆𝐼 = {𝒙𝑖
𝐼
}𝑁𝑖𝑛

𝑖=1 and 𝑆𝐵 = {𝒙𝑗
𝐵
}𝑁𝑏𝑑

𝑗=1 stand for the train data of Ω and 𝜕Ω, respectively. The term of ℒ𝑖𝑛 composed of the residual 
governed by differential equations and the discrepancy concerning flux, minimizes the residual of the PDEs, whereas the term of ℒ𝑏𝑑

pushes the DNN solver to match the given boundary conditions. In addition, a constant parameter 𝛾 > 0 is introduced to force well 
the ℒ𝑏𝑑 (𝑆𝐵 ; 𝜽) → 0 in the loss function, it is increasing gradually with training process going on.

Based on the analysis in Bersetche and Borthagaray [39], a nonconstant continuous activation function 𝜎 can guarantee the 
mapping 𝜽↦ (𝑢𝑁𝑁, 𝝓𝑁𝑁 ) is continuous, then the distance between approximation functions 𝒒𝑁𝑁 = (𝑢𝑁𝑁, 𝝓𝑁𝑁 ) and exact solution 
𝒒∗ = (𝑢∗, 𝝓∗) will decrease by adjusting gradually the parameters of DNN, i.e.,

𝑑(𝒒∗,𝑘) = inf
𝒒𝑁𝑁∈𝑘

‖𝒒∗ − 𝒒𝑁𝑁‖→ 0 as 𝑘→∞.

It means the loss function ℒ(𝑆𝐼 ,𝑆𝐵 ; 𝜽) will attain the corresponding minimum when 𝑑 → 0. Hence, Our purpose is to find an optimal 
set of parameter 𝜽∗ such that the approximations 𝑢𝑁𝑁 and 𝝓𝑁𝑁 minimize the loss function ℒ(𝑆𝐼 ,𝑆𝐵 ; 𝜽). If the loss function value 
is small enough, then 𝑢𝑁𝑁 and 𝝓𝑁𝑁 will be very close to the solution of (1). Then, optimization methods like SGD, Adam, Adagrad 
and RMSprop are required to update the parameters of the DNN during the training.

3.3. Option of activation function for FMPINN and its explanation

Choosing a suitable and effective activation function is a critical concern when aiming to enhance the performance of DNN in 
computer vision, natural language processing, and scientific computation. Generally, an activation function such as rectified linear 
unit ReLU(𝒛) and hyperbolic tangent function tanh(𝒛), can improve the capacity and nonlinearity of neural networks to address 
various nonlinear problems, such as the solution of various PDEs and classification. Recently, the works [40,41] manifested that 
the DNN often captures firstly the low-frequency component for target functions, then matches the high-frequency component, they 
called it the spectral bias or frequency preference of DNN. Under this phenomenon, many researchers attempt to utilize a Fourier 
feature mapping consisting of sine and cosine as the activation function to improve the capacity of MscaleDNN, it will mitigate the 
pathology of spectral bias and enable networks to learn high frequencies more effectively [41,46,49,50]. It is expressed as follows:

𝜁(𝒙) =
[
cos(𝜿𝒙)
sin(𝜿𝒙)

]
, (20)

where 𝜿 is a user-specified vector or matrix (trainable or untrainable) that is consistent with the number of neural units in the first 
hidden layer for DNNs. Further, the work [45] designed a soften Fourier mapping by introducing a relaxing parameter 𝑠 ∈ (0, 1] in 
𝜁(𝒙), numerical results show that this modification will improve the capacity of 𝜁(𝒙). This activation function is used in the first 
hidden layer of DNN and maps the input data in Ω into a range of [−1, 1], then enhances the ability of DNN and expedites its 
7

convergence.
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Fig. 4. Illustration of the total error for FMPINN.

Therefore, a real function (𝑥) represented by DNN can be expressed as follows

(𝒙) =
𝑁̃∑
𝑛=0

(
𝑆
(
cos(𝒌𝑛𝒙); 𝜽̄𝑛

)
+ 𝑇

(
sin(𝒌𝑛𝒙); 𝜽̃𝑛

))
,

where 𝑆(⋅, ̄𝜽), 𝑇 (⋅, ̃𝜽) are the DNNs or the sub-modules of DNNs, respectively, {𝒌0, 𝒌1, 𝒌2, ⋯} are the frequencies of interest for the 
objective function. The first hidden layer performed by Fourier feature mapping mimics the Fourier basis function, and the remaining 
blocks with different activation functions are used to learn the coefficients of these functions. After performing the Fourier mapping 
for input points with a given scale factor, the neural network can well capture the fine varying information for multi-scale problems.

Remark 1. (Lipschitz continuity) If an activation function 𝜎 is continuous (i.e., 𝜎 ∈ 𝐶1) and satisfies the following boundedness 
condition:

|𝜎(𝑥)| < 1 and |𝜎′(𝑥)| < 1,

for any 𝑥 ∈ℝ. Then, we have

|𝜎(𝑥) − 𝜎(𝑦)| ⩽ |𝑥− 𝑦| and |𝜎′(𝑥) − 𝜎′(𝑦)| < |𝑥− 𝑦|,
for any 𝑥, 𝑦 ∈ ℝ. The activation functions 𝑡𝑎𝑛ℎ(𝑥), 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥), Fourier feature mapping 𝜁(𝑥) and 12 𝑠𝑖𝑛(𝑥) +

1
2 𝑐𝑜𝑠(𝑥) are all satisfy 

the above condition and have a good regularity, they will overcome the gradient explosion of parameter in the backpropagation for 
DNN and improve the capacity of DNN.

3.4. Simple error analysis for FMPINN

In recent times, there have been endeavors to rigorously analyze the convergence rate of the deep mixed residual method and 
compare it with the deep Galerkin method (DGM) and deep Ritz method (DRM) across different scenarios [39,61,62]. In this study, 
we investigate those results of convergence again, then provide the expression of generalization error for FMPINN and some remarks 
of errors.

For convenience, let 𝒒∗ = (𝑢∗, 𝝓∗) be the exact solution of equation (14) or the minimum of cost function (15) with (16) for coer-

cive boundary constraints. Meantime, the 𝒒𝜽∗ = (𝑢𝜽∗ , 𝝓𝜽∗ ) stands for the final output of DNN optimized by stochastic optimizer (such 
as Adam or SGD) that attains the local minimum of (19). Further, we let ℒ̃(𝑢, 𝝓) be the cost function evaluated on 𝑁 points sampled 
from Ω and denote the output of DNN as 𝒒𝜽 = (𝑢𝜽, 𝝓𝜽). Finally, 𝑁𝑁 represents the function space spanned by the output of DNN. 
Then, the total error (or generalization error) between the exact solution 𝒒∗ and the output of DNN 𝒒𝜽 can be expressed as‖‖‖𝑢𝜽 − 𝑢∗

‖‖‖1(Ω)
+ ‖‖‖𝝓𝜽 −𝝓∗‖‖‖1(𝒅𝒊𝒗,Ω)

⩽ 𝐶(𝑐𝑜𝑒)
√

𝛿𝑎𝑝𝑝 + 𝛿𝑒𝑠𝑡 + 𝛿𝑜𝑝𝑡 (21)

with ⎧⎪⎪⎨⎪⎪⎩
𝛿𝑎𝑝𝑝 = inf

(𝑢,𝝓)∈𝑁𝑁

‖𝑢− 𝑢∗‖21(Ω)
+ ‖𝝓−𝝓∗‖2(𝒅𝒊𝒗,Ω),

𝛿𝑒𝑠𝑡 = sup
(𝑢,𝝓)∈𝑁𝑁

[(𝑢,𝝓) − ℒ̃(𝑢,𝝓)] + sup
(𝑢,𝝓)∈𝑁𝑁

[ℒ̃(𝑢,𝝓) −(𝑢,𝝓)],
𝛿𝑜𝑝𝑡 = ℒ̃(𝑢𝜽∗ ,𝝓𝜽∗ ) − ℒ̃(𝑢𝜽,𝝓𝜽).

In which, the approximated error 𝛿𝑎𝑝𝑝 indicates the difference between (𝑢∗, 𝝓∗) and its projection onto 𝑁𝑁 , the estimation error 
𝛿𝑒𝑠𝑡 measures the difference between the continuous cost function  and discrete cost function ℒ̃, the optimization error 𝛿𝑜𝑝𝑡 stands 
for the discrepancy between the output of DNN with optimizing and the output of DNN without optimizing. In Fig. 4, we depict the 
diagram of error for FMPINN. The convergence and error analysis of MIM in works [61,62] can be used to support our results in this 
section by appropriately adjusting their corresponding conclusions.

Remark 2. The approximating error is generally dependent on the architectural design of the neural network and the choice of the 
8

activation function. Classical radial basis network [63], the vanilla DNN and Random feature network [64] as well as its special 
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case Extreme Learning Machine (ELM) [65,66] are the common meshless method for approximating the solution of PDEs. To address 
the spatio-temporal problems, some hybrid network frameworks have been designed by combining PINN with traditional numerical 
methods to solve PDEs, such as FDM-PINN and Runge-Kutta PINN [24,67]. Moreover, instead of soft constraints in a hard manner for 
the boundary or initial conditions in those methods, the approximation will automatically meet the boundary and initial conditions 
of PDEs, then reduce the complexity and improve the precision of NN [35]. On the other hand, a powerful activation function, 
such as the hyperbolic tangent activation function and Fourier feature mapping, not only enhances the nonlinearity of DNN but also 
improves its approximating capacity and accuracy. In addition, some available data are generally considered as a loss term to reduce 
the approximating error.

Remark 3. Generally, the proposed FMPINN surrogate can provide more accurate approximations as the number of random collo-

cation points increases. However, it will lead to heavy computational costs for lots of samplings. Then, it is worthwhile to take into 
account the trade-off between accuracy and computational cost when designing a DNN surrogate and determining its training mode. 
Alternatively, one can employ some effective low-discrepancy sampling approaches to decrease the statistical error, such as the Latin 
hypercube sampling method [68], quasi-random sampling [69] and multilevel Monte Carlo method [70].

Remark 4. Since the cost function generally is non-convex and has several local minima, then the gradient-based optimizer will 
almost certainly become caught in one of them. Therefore, choosing a good optimizer is important to reduce the optimization error 
and get a better minimum. In many scenarios of optimizing DNN, the Adam optimization method has shown its good performance 
including efficiency and accuracy, it can dynamically adjust the learning rates of each parameter by using the first and second 
moments estimation of the gradients [55]. BFGS is a quasi-Newton method and numerically stable, it may provide a higher-precision 
approximated solution [71]. In an implementation, the limited memory version of BFGS (L-BFGS) is the common choice to decrease 
the optimization error and accelerate convergence for cases with a small amount of training data and/or residual points. Further, 
by combining the merits of the above two approaches, one can optimize the cost function firstly by the Adam algorithm with a 
predefined stop criterion, then obtain a better result by the L-BFGS optimizer.

4. FMPINN algorithm

For the FMPINN method with the MscaleDNN model composed of 𝑄 subnetworks as in Fig. 1 being its solver, the input data for 
each subnetwork will be transformed by the following operation

𝒙̂ = 𝑎𝑖 ∗ 𝒙, 𝑖 = 1,2,… ,𝑄,

with 𝑎𝑖 ⩾ 1 being a positive scalar factor, it means the scale vector Λ = (𝑎1, 𝑎2, … , 𝑎𝑄) as in (6). Denoting the output of each 
subnetwork as 𝑭 𝑖(𝑖 = 1, 2, … , 𝑄), then the overall output of the MscaleDNN model is obtained by

𝒚(𝒙;𝜽) = 1
𝑄

𝑄∑
𝑖=1

𝑭 𝑖

𝑎𝑖
.

According to the above discussions, the procedure of the FMPINN algorithm for addressing the multi-scale problem (1) in finite-

dimensional spaces is described in the following.

Algorithm 1 FMPINN algorithm for solving multi-scale PDEs (1)

1. Generating the 𝑘𝑡ℎ training set 𝑘 includes interior points 𝑆𝑘
𝐼
= {𝒙𝑖

𝐼
}𝑁𝑖𝑛

𝑖=1 with 𝒙𝑖
𝐼
∈ℝ𝑑 and boundary points 𝑆𝑘

𝐵
= {𝒙𝑗

𝐵
}𝑁𝑏𝑑

𝑗=1 with 𝒙𝑗
𝐵
∈ℝ𝑑 . Here, we draw the random 

points 𝒙𝑖
𝐼

and 𝒙𝑗
𝐵

from ℝ𝑑 with positive probability density 𝜈, such as uniform distribution.

2. Calculating the objective function ℒ(𝑘; 𝜽𝑘) for training set 𝑘 :

ℒ(𝑘;𝜽𝑘) =ℒ𝑖𝑛(𝑆𝑘
𝐼
;𝜽𝑘) + 𝛾ℒ𝑏𝑑 (𝑆𝑘

𝐵
;𝜽𝑘)

with ℒ𝑖𝑛(⋅; 𝜽𝑘) being defined in (17) and ℒ𝑏𝑑 (⋅; 𝜽𝑘) being defined in (18).

3. Taking a suitable optimization method to update the internal parameters of DNN at the random point of 𝒙̃𝑘 , such as SGD method expressed as follows:

𝜽𝑘+1 = 𝜽𝑘 − 𝛼𝑘∇𝜽𝑘ℒ(𝒙̃𝑘;𝜽𝑘) with 𝒙̃𝑘 ∈ 𝑘,

where the “learning rate” 𝛼𝑘 decreases with 𝑘 increasing.

4. Repeating steps 1-3 until the convergence criterion is satisfied or the objective function tends to be stable.

5. Numerical experiments

The goal of our experiments is to show that our FMPINN is indeed capable of approximating the analytical solution given in 
(1). For comparison purposes, the PINN method with MscaleDNN being its solver and the local deep learning method (LDLM) with 
9

normal DNN being its solver is as the baseline to solve (1) in varying-dimensional spaces.
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5.1. Model and training setup

In the aforementioned FMPINN and MPINN models, a standard MscaleDNN with multi subnetworks that stretch the input data 
via various scale factors is configured as their solver. The MscaleDNN consists of 24 subnetworks according to the manually defined 
frequencies vector Λ = (1, 2, 3, 4, 5, 10, ⋯ , 90, 95, 100). Each subnetwork contains 5 hidden layers with proper size and the activation 
function of the first hidden layer for each subnetwork is set as Fourier feature mapping and the other activation functions (except 
for the output layer) are set as 12 sin(𝑥) +

1
2 cos(𝑥), its output layer is linear. The overall output is a weighted sum of the outputs 

of all subnetworks through the relevant scale factors. In terms of the LDLM [37], two activation functions are considered for this 
model: LDLM1 with 𝑅𝑒𝑄𝑈 =max{0, 𝑥}2 being its activation for hidden layers and LDLM2 with 12 sin(𝑥) +

1
2 cos(𝑥) being its activation 

function for hidden layers, their output is all linear.

In our numerical experiments, all training data are sampled from the domain (including its boundaries) of interest in Euclidean 
space ℝ𝑑 , the sampling probability densities are assigned as the uniform distribution. We train all neural networks by an Adam 
optimizer with an initial learning rate of 0.01, and the learning rate will be decayed by 2.5% for every 100 training epochs [55]. 
Here, the following 𝐿2 relative error is used to evaluate our models:

𝑅𝐸𝐿 =

√√√√∑𝑁 ′
𝑖=1 |𝑢̃(𝒙𝑖) − 𝑢∗(𝒙𝑖)|2∑𝑁 ′

𝑖=1 |𝑢∗(𝒙𝑖)|2 ,

where 𝑢̃(𝒙𝑖) and 𝑢∗(𝒙𝑖) are the approximate solution of deep neural network and exact solution for testing points {𝒙𝑖}(𝑖 = 1, 2, ⋯ , 𝑁 ′), 
respectively, and 𝑁 ′ represents the number of sample points for testing. In addition, we also introduce the following relative error 
within the 𝐻1 norm to measure the approximation accuracy for our proposed FMPINN.

𝐻1𝐸𝑅𝑅 =

√√√√∑𝑁 ′
𝑖=1 |𝑢̃(𝒙𝑖) − 𝑢∗(𝒙𝑖)|2 +∑𝑁 ′

𝑖=1 |∇𝑢̃(𝒙𝑖) − ∇𝑢∗(𝒙𝑖)|2∑𝑁 ′
𝑖=1 |𝑢∗(𝒙𝑖)|2 +∑𝑁 ′

𝑖=1 |∇𝑢∗(𝒙𝑖)|2
To visualize the training process, our model will be evaluated once for every 1000 iterations in the whole training cycle and 

recorded the result at the end. In our codes, the penalty parameter 𝛾 is set as

𝛾 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝛾0, if 𝑖epoch <𝑀max ∗ 0.1

10𝛾0, if 𝑀max ∗ 0.1 <= 𝑖epoch <𝑀max ∗ 0.2

50𝛾0, if 𝑀max ∗ 0.2 <= 𝑖epoch <𝑀max ∗ 0.25

100𝛾0, if 𝑀max ∗ 0.25 <= 𝑖epoch <𝑀max ∗ 0.5

200𝛾0, if 𝑀max ∗ 0.5 <= 𝑖epoch <𝑀max ∗ 0.75

500𝛾0, otherwise,

(22)

where the 𝛾0 = 10 in all our tests and 𝑀max represents the total number of epochs. We implement and perform all neural network 
models using the package of Pytorch (version 1.14.0) on a workstation (64 GB RAM, single NVIDIA GeForce RTX 4090 24-GB).

5.2. Performance of FMPINN for solving multi-scale elliptic PDEs

Example 1. Firstly, we consider the one-dimensional case for (1) with Dirichlet boundary in interval [0, 1], in which 𝐴𝜀(𝑥) is given 
by

𝐴𝜀(𝑥) =
(
2 + cos

(
2𝜋 𝑥

𝜀

))−1
(23)

with a small parameter 𝜀 > 0 such that 𝜀−1 ∈ ℕ+ and the force term 𝑓 (𝑥) = 1. Under these conditions, a unique solution is given by

𝑢𝜀(𝑥) = 𝑥− 𝑥2 + 𝜀

(
1
4𝜋

sin
(
2𝜋 𝑥

𝜀

)
− 1

2𝜋
𝑥 sin

(
2𝜋 𝑥

𝜀

)
− 𝜀

4𝜋2 cos
(
2𝜋 𝑥

𝜀

)
+ 𝜀

4𝜋2

)
. (24)

The analytical solution induces its boundary condition 𝑢𝜀(0) = 𝑢𝜀(1) = 0.

In this example, we use the FMPINN, MPINN, LDLM1, and LDLM2 models to solve (1) when 𝜀 = 0.1, 0.01 and 0.001, respectively. 
The size of the hidden layer for each subnetwork of FMPINN and MPINN is set as (30, 40, 30, 30, 30) and the balance parameter 𝛽
in (17) is set as 10. The hidden layer’s size for LDLM is set as (300, 400, 300, 300, 300). Their parameters’ numbers are comparable. 
At each training step, we randomly sample 3000 points inside the [0, 1] and 500 boundary points as a training dataset. In addition, 
the testing dataset includes 1000 equidistant samples from [0, 1]. All models are trained for 50000 epochs. We depict the related 
experiment results in Figs. 5, 6 and 7, respectively. Meantime, the final relative 𝐿2 and 𝐻1 error and total running time are listed in 
10

Tables 1 and 2.
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Fig. 5. Rough coefficient, loss of flux term and testing results for Example 1 when 𝜀 = 0.1.

Table 1

The relative error and running time of FMPINN, MPINN, LDLM1, and LDLM2 for Example 1.

REL Total time(s)

𝜀 FMPINN MPINN LDLM1 LDLM2 FMPINN MPINN LDLM1 LDLM2

0.1 2.92e-6 2.60e-7 0.3227 0.3389 680.734 865.849 345.791 373.537

0.01 1.21e-6 0.874 0.3397 0.3406 689.729 868.199 351.451 377.089

0.001 9.28e-5 0.99 0.3389 0.3398 691.458 875.297 358.435 388.273

Based on these figures, the FMPINN model can perfectly capture the oscillation of the exact solution for 𝜀 = 0.1, 0.01 and 0.001, 
but LDLM models are not convergent for these cases. At the same time, the performance of MPINN competes with that of FMPINN 
when 𝜀 = 0.1. However, the MPINN model fails to solve the multi-scale problem for 𝜀 = 0.1 and 0.01. Compared to 𝜀 = 0.01, the rough 
coefficient 𝐴𝜀 with 𝜀 = 0.001 have more oscillation in the interval [0, 1], but the FMPINN still can keep its remarkable performance. 
According to the point-wise errors in Figs. 5(d), 6(d) and 7(d) and the relative error in Figs. 5(h), 6(h) and 7(h), we can conclude 
that the FMPINN can approximate high-precisely the exact solution of (1) in one-dimensional space. In addition, the total time in 
Table 1 shows the running time of FMPINN is less than that of MPINN for 50000 training epochs.

In addition, the finite element method (FEM) is introduced for comparison in solving the multiscale problem (1) in one-

dimensional space with varying numbers of equidistant points. The results of both FMPINN and FEM methods are presented in 
Table 3, which demonstrate that our proposed method surpasses the FEM in terms of accuracy for 1000 equidistant points within the 
interval [0, 1]. With the number of points increasing, the performance of FEM will become better and better for 𝜀 = 0.1, 0.01, and 
11

0.001, and it will surpass FMPINN in terms of accuracy and running time for 100000 and 500000 equidistant points.
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Fig. 6. Rough coefficient, loss of flux term and testing results for Example 1 when 𝜀 = 0.01.

Table 2

The relative error in 𝐻1 norm for FMPINN model 
VS various 𝜀 for Example 1.

𝜀 0.1 0.01 0.001

H1ERR 0.01753 0.001823 0.002995

Table 3

The REL and running time of FMPINN and Finite Element Method for Example 1.

Method Number of points REL Time(s)

𝜀 = 0.1 𝜀 = 0.01 𝜀 = 0.001 𝜀 = 0.1 𝜀 = 0.01 𝜀 = 0.001

FMPINN 1000 2.922e-6 1.215e-6 9.283e-5 680.734 689.729 691.458

FEM 1000 4.447e-5 0.0044 0.1338 0.3365 0.3057 0.3168

5000 1.776e-6 1.762e-4 0.01666 0.7994 0.7834 0.7162

10000 4.439e-7 4.408e-5 0.0043 1.3435 1.2936 1.3011

50000 1.751e-8 1.763e-6 1.762e-4 5.6383 5.8812 5.7875

100000 5.831e-9 4.416e-7 4.407e-5 11.1615 11.1076 11.8971

500000 1.175e-8 3.162e-8 1.757e-6 53.2835 53.1815 53.4899
12
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Fig. 7. Rough coefficient, loss of flux term and testing results for Example 1 when 𝜀 = 0.001.

Table 4

The relative error of FMPINN model VS various 𝛽 for Example 1.

𝛽 1 5 10 15 20 25

REL 3.31e-4 1.37e-4 9.27e-5 7.75e-5 6.40e-5 8.60e-5

Influence of hyper-parameter 𝛽: In the previous tests, the parameter 𝛽 was initially set to 10. Now, we study the influence of 𝛽 for 
our FMPINN model. In these tests, we take 𝜀 = 0.001 in (23) and consider values of 𝛽 equal to 1, 5, 10, 15, 20 and 25, while keeping 
all other parameters fixed. All models with different 𝛽 values are trained for 50000 epochs. Fig. 8 plots the results of flux loss for 
the training process as well as the relative error for testing. Additionally, the final relative errors obtained from the tests are listed in 
Table 4.

According to the above results in Fig. 8 and Table 4, it can be observed that the FMPINN model exhibits remarkable and stable 
performance across different values of 𝛽. The performances of the FMPINN model for 𝛽 = 1 and 𝛽 = 5 are slightly weaker than that 
of other cases. The loss of flux term is also stable and consistent with the trendlines of REL. Therefore, for the subsequent tests, we 
will continue to set 𝛽 = 10.

Influence of the activation function for FMPINN: Now, we study the influence of the activation function for our proposed FMPINN 
model to solve (1). In the test, the activation functions of the hidden layers (except the first layer and the last layer) for each 
subnetwork in the FMPINN model are set as sin, tanh, requ, elu, gelu, relu, and leaky_relu, respectively, and the other setups are 
13

identical to the above experiments. Based on the results in Table 5, we observe that the performance of 12 sin(𝑥) +
1
2 cos(𝑥) and gelu 
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Fig. 8. The loss of flux term VS training epoch and the relative error VS testing epoch for Example 1 when 𝜀 = 0.001.

Table 5

REL of FMPINN with different activation functions for solving Example 1 with 𝜀 = 0.01 and 𝜀 = 0.001.

𝜀 sin tanh 1
2
sin(𝑥) + 1

2
cos(𝑥) requ elu gelu relu leaky relu

0.1 0.0014 5.83e-6 2.92e-6 9.66e-4 2.33e-6 8.22e-6 5.52e-4 0.0019

0.01 0.99 1.52e-4 1.21e-6 0.0783 4.28e-4 4.11e-6 0.79 0.27

0.001 0.99 0.31 9.28e-5 0.337 0.339 0.338 0.94 0.34

Table 6

The REL and running time of FMPINN with different optimizers for Example 1 when 𝜖 = 0.01.

Optimizer SGD Moment Adam LBFGS Adam+LFGS LBFGS+Adam

REL 0.3449 0.3421 1.21e-6 0.0014 1.18e-6 8.96e-5

Time(s) 635.99 640.86 656.49 4624.38 1040.22 2705.12

are superior to that of others for our FMPINN model when 𝜀 = 0.1 and 𝜀 = 0.01, and their performance compete. However, the 
FMPINN models with the above activation functions all failed in approximating the solution of multi-scale problem (1). Then, the 
activation function 12 sin(𝑥) +

1
2 cos(𝑥) is an ideal candidate for our FMPINN model.

Influence of the optimizer for FMPINN: In the test, all models with different optimizers are trained for 50000 epochs. Except for the 
original Adam optimizer for our FMPINN model, we further set the optimizer as SGD, Momentum, Adam, LBFGS, Adam+LBFGS, and 
LBFGS+Adam, respectively, their setups are as follows:

• SGD: the corresponding setups are same as the Adam optimizer;

• Momentum: the initial learning rate and the decay schedule are the same as the Adam optimizer, its momentum is set as 0.5;

• LBFGS: the initial learning rate and the decay schedule are the same as the Adam optimizer, its max iteration, history size of the 
change, and line search function are set as 500, 100, and strong Wolfe, respectively;

• Adam+LBFGS : the FMPINN model is trained using Adam with an initial learning rate of 0.01 for 40000 epochs, then trained 
using LBFGS with an initial learning rate of 0.0001 for 10000 epochs. Their other setups are the same as the Adam and LBFGS 
in this test;

• LBFGS+Adam : the FMPINN model is trained using LBFGS with an initial learning rate of 0.01 for 10000 epochs, then trained 
using Adam with an initial learning rate of 0.001 for 40000 epochs. Their other setups are the same as the Adam and LBFGS in 
this test.

The other setups are identical to the above experiments. Based on the results in Table 6 and Fig. 9, we find that FMPINN models 
utilizing Adam and Adam+LBFGS optimizers outperform those employing other optimizers. Furthermore, the running time for 
FMPINN models with Adam is less than that with Adam+LBFGS. Therefore, Adam appears to be an ideal candidate optimizer 
for our FMPINN model.

Example 2. Let us attempt to solve the following three-scale problem with the Dirichlet boundary in Ω = [0, 1]. In which,

𝐴𝜀(𝑥) =
(
2 + cos

(
2𝜋 𝑥

𝜀1

))(
2 + cos

(
2𝜋 𝑥

𝜀2

))
14

with two small parameters 𝜀1, 𝜀2 > 0 such that 𝜀−11 , 𝜀−12 ∈ℕ+ and an exact solution is given by
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Fig. 9. The REL curves for FMPINN model with different optimizers.

Table 7

The relative error and consumed time of FMPINN, MPINN, LDLM1, 
and LDLM2 for Example 2.

Method FMPINN MPINN LDLM1 LDLM2

REL 3.36e-4 5.02e-2 0.5341 0.8372

H1ERR 0.0121 0.0423 0.965 0.989

Total time(s) 696.537 965.076 377.18 399.575

𝑢𝜀(𝑥) = 𝑥− 𝑥2 +
𝜀1
4𝜋

sin
(
2𝜋 𝑥

𝜀1

)
+

𝜀2
4𝜋

sin
(
2𝜋 𝑥

𝜀2

)
. (25)

Clearly, 𝑢𝜀(0) = 𝑢𝜀(1) = 0. One can obtain the force side after careful computation, we omit it here.

We solve the above three scale problems when 𝜀1 = 0.1 and 𝜀2 = 0.01 by employing the aforementioned FMPINN, MPINN, LDLM1, 
and LDLM2 models, respectively. All settings are the same as the Example 1. The training dataset includes 3000 interior random 
points and 500 boundary random points, and the testing dataset includes 1000 equidistant samples. The related experiment results 
are listed in Table 7 and plotted in Fig. 10, respectively.

Fig. 10 shows that the FMPINN model still is well able to capture all oscillations of the exact solution for the three-scale problem, 
the MPINN model also captures the profile of the solution of (1) with 𝜀1 = 0.1 and 𝜀2 = 0.01. However, the LDLM1 and LDLM2 all 
fail to fit the solution. Figs. 10(d) – 10(g) not only show the point-wise errors of FMPINN for major points that are close to zero but 
also reveal the point-wise error of FMPINN is very smaller than that of the MPINN and the LDLM models are all bad. Additionally, 
Fig. 10(h) and Table 7 illustrate that the REL of FMPINN is superior to that of MPINN by more than two orders of magnitude, and 
the former H1ERR is approximately one-quarter of the latter. In addition, its running time is 696.537 seconds and less than that of 
MPINN.

From the above results, we conclude that the FMPINN model is remarkable to address the (1) with rough coefficient in one-

dimensional space, it generally outperforms the MPINN and LDLM models.

Example 3. We consider the following two-dimensional problem for (1) with Dirichlet boundary in regular domains Ω = [−1, 1] ×
[−1, 1]. In this example, we choose the 𝑓 (𝑥1, 𝑥2) = 5 and provide the following two-scales coefficient with scale separation

𝐴𝜀(𝑥1, 𝑥2) =
1.5 + sin(2𝜋𝑥1∕𝜀)
1.5 + sin(2𝜋𝑥2∕𝜀)

+
1.5 + sin(2𝜋𝑥2∕𝜀)
1.5 + cos(2𝜋𝑥1∕𝜀)

+ sin(4𝑥21𝑥
2
2) + 1, (26)

where 𝜀 > 0 is a small parameter such that 𝜀−1 ∈ ℕ+. Since the corresponding exact solution can not be expressed explicitly in this 
example, then a reference solution 𝑢𝜀(𝑥1, 𝑥2) is set as the finite element solution computed by numerical homogenization method 
[15] on a square grid [−1, 1] × [−1, 1] with mesh-size ℎ = 1∕128.

We solve the above two scale problems when 𝜀 = 0.05 by employing the aforementioned FMPINN, MPINN, LDLM1, and LDLM2 
models, respectively. The size of the hidden layer for each subnetwork of FMPINN and MPINN is set as (40, 60, 40, 40, 40) and 
the hidden layers’ size for LDLMs is set as (400, 250, 250, 200, 200). At each training step, the training dataset includes 5000 points 
sampled inside the Ω and 2000 boundary points sampled from the 𝜕Ω, respectively. To test our models, the testing dataset is the 
collection of all grid points in domain [−1, 1] × [−1, 1] with mesh-size ℎ = 1∕128. The related experiment results are listed in Table 8

and plotted in Fig. 11, respectively.

In this example, the 𝐴𝜀(𝑥1, 𝑥2) have two different frequency components and is quite oscillating (see Fig. 11(a)), then DNN will 
encounter some troubles to address multi-scale PDEs (1). According to the results of point-wise error (Figs. 11(d) - 11(g)) and relative 
errors (Fig. 11(h)), the performance of our FMPINN model is still superior to that of the MPINN, LDLM1 and LDLM2 models, and 
can obtain a favorable approximation to multi-scale problems (1). In addition, the test REL curve in Fig. 11(h) indicates the FMPINN 
15

model is stable in the whole training cycle and its tendency is consistent with the curve of loss for flux term in Fig. 11(c). The 
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Fig. 10. Rough coefficient, loss of flux term and testing results for Example 2 when 𝜀1 = 0.1 and 𝜀2 = 0.01.

Table 8

The relative error and consumed time of FMPINN, MPINN, LDLM1, 
and LDLM2 for Example 3.

Method FMPINN MPINN LDLM1 LDLM2

REL 0.0139 0.99 0.2431 0.2401

Total time(s) 2098.258 3885.934 626.685 689.619

running time of our FMPINN model is about half of that of the MPINN model, which means the FMPINN model is efficient in solving 
multi-scale PDEs (1) with two scales coefficient.

Example 4. We consider the following two-dimensional problem for (1) with Dirichlet boundary in regular domains Ω = [−1, 1] ×
[−1, 1]. In this example, we choose the 𝑓 (𝑥1, 𝑥2) = 1 and provide a multi-frequency coefficient

𝐴𝜀(𝑥1, 𝑥2) = Π5
𝑖=1

(
1 + 0.5cos

(
2𝑖𝜋(𝑥1 + 𝑥2)

))(
1 + 0.5 sin

(
2𝑖𝜋(𝑥2 − 3𝑥1)

))
. (27)

Same as the Example 3, a reference solution 𝑢𝜀(𝑥1, 𝑥2) is set as the finite element solution computed by numerical homogenization 
16

method [15] on a square grid [−1, 1] × [−1, 1] with mesh-size ℎ = 1∕128.
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Fig. 11. Rough coefficient, reference solution, loss of flux term and testing results for Example 3.

Table 9

The relative error and consumed time of FMPINN, MPINN, LDLM1, 
and LDLM2 for Example 4.

Method FMPINN MPINN LDLM1 LDLM2

REL 0.0557 0.99 0.936 0.9127

Total time(s) 2013.258 3985.934 606.685 659.619

By meticulously implementing the previously mentioned FMPINN, MPINN, and LDLMs models with the specified setups, we 
obtain the approximated solution of (1) with (27). The setup for all models is identical to that of Example 3. During each training 
step, the training dataset comprises 5000 points randomly sampled from Ω and 2000 boundary points sampled from the boundary 
𝜕Ω, respectively. Meantime, the testing dataset is composed of grid points on the square domain [−1, 1] × [−1, 1] with mesh size 
ℎ = 1∕128. The related experiment results are listed in Table 9 and plotted in Fig. 12, respectively.

In this example, the 𝐴𝜀(𝑥1, 𝑥2) is oscillating with six different frequency components (seeing Fig. 12(a)), it will increase the 
difficulty for DNN to address multi-scale PDEs (1). The point-wise error (Figs. 12(d) - 12(g)) and the relative errors (Fig. 12(h)) 
indicate that our FMPINN model is still favorable to capture the solution of multi-scale problems with complex multi-frequency 
coefficient, but the MPINN, LDLM1, and LDLM2 models all performance poorly for approximating the solution of (1). Additionally, 
17

the test REL curve in Fig. 12(h) and the curve of loss for flux term in Fig. 12(c) are all flat indicating the FMPINN model is stable 
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Fig. 12. Rough coefficient, reference solution, loss of flux term and testing results for Example 4.

in the whole training cycle. Moreover, the running time of our FMPINN model is less than that of the MPINN model in solving 
multi-scale PDEs (1) for coefficient (27).

Example 5. We next study the performance of our FMPINN model to solve the elliptic equation (1) with Dirichlet boundary in a 
cubic domain Ω = [0, 1] × [0, 1] × [0, 1] where we take

𝐴𝜀(𝑥1, 𝑥2, 𝑥3) = 2 + sin
(
2𝜋𝑥1
𝜀

)
sin

(
2𝜋𝑥2
𝜀

)
sin

(
2𝜋𝑥3
𝜀

)
, (28)

with a small parameter 𝜀 > 0 such that 𝜀−1 ∈ ℕ+. Also, we let the force side 𝑓 (𝑥1, 𝑥2, 𝑥3) = 20 and the boundary function 
𝑔(𝑥1, 𝑥2, 𝑥3) = 0 on 𝜕Ω.

We utilize the FMPINN, MPINN, LDLM1, and LDLM2 models to approximate the solution of a three-dimensional multi-scale 
problem (1) with rough coefficient (28) when 𝜀 = 0.1, the setups the four models are same as the Example 4. The training dataset 
includes 7500 interior points and 1000 boundary points randomly sampled from Ω and 𝜕Ω, respectively. To facilitate the process, a 
reference solution 𝑢𝜀(𝑥1, 𝑥2, 𝑥3) is established as the numerical solution obtained using the finite difference method on the domain 
[0, 1] × [0, 1] × [0, 1] with a mesh-size ℎ = 1∕64. The test dataset is formed by including all grid points within the domain [0, 1] × [0, 1]
with a mesh size ℎ = 1∕64 while keeping the value of 𝑧 fixed at 0.3125. We list the total running time and REL in Table 10 and plot 
18

the related results in Fig. 13.
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Table 10

The relative error and running time of FMPINN, MPINN, LDLM1 and 
LDLM2 for Example 5.

Method FMPINN MPINN LDLM1 LDLM2

REL 0.0071 0.0335 0.8048 0.5326

Total time(s) 5179.601 9271.072 1065.541 1195.233

Fig. 13. Rough coefficient, reference solution, loss of flux term and testing results for Example 5.

Based on the results in Fig. 13, we can see that our FMPINN model still outperforms the MPINN and LDLMs models for multi-scale 
problems in three-dimensional space. The point-wise absolute error and the relative error of the former one are much smaller than 
that of the latter three, the precision of FMPINN is very good with a small absolute point-wise error. Additionally, the REL curve 
and the loss curve of the flux term are all flat in the later period of the training process, which means the performance of FMPINN is 
stable. The running time of FMPINN is 5179.601 seconds and less than 3800 seconds than MPINN’s.

In addition, we list the H1ERR of our proposed FMPINN model for solving Examples 3 – 5 in the following Table 11. The results 
show that our model can approximate the solution of multi-scale PDEs (1) with satisfactory accuracy.

Example 6. We consider the following eight-dimensional problem for (1) with Dirichlet boundary in regular domains Ω = [0, 1]8. In 
19

which, we take
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Table 11

The relative error of FMPINN in 𝐻1 norm for 
Examples 3 – 5.

Example 3 4 5

H1ERR 0.0394 0.2711 0.0109

Fig. 14. Loss of flux term and testing results for Example 6.

𝐴(𝑥1, 𝑥2,⋯ , 𝑥8) = 1 + 1
8

[
cos(2𝜋𝑥1) + cos(4𝜋𝑥2) + cos(8𝜋𝑥3) + cos(16𝜋𝑥4)+

cos(16𝜋𝑥5) + cos(8𝜋𝑥6) + cos(4𝜋𝑥7) + cos(2𝜋𝑥8)
]
.

Meantime, an exact solution satisfied (1) is given by

𝑢(𝑥1, 𝑥2,⋯ , 𝑥8) =
8∏

𝑗=1
sin(𝜋𝑥𝑗 ).

The functions 𝑓 (𝑥1, 𝑥2, ⋯ , 𝑥8) in Ω and 𝑔(𝑥1, 𝑥2, ⋯ , 𝑥8) on 𝜕Ω are easy to obtain according to the rough coefficient and exact solution, 
we omit them.

In this example, we only perform the FMPINN, LDLM1, and LDLM2 model to solve the (1) in eight-dimensional space, because 
the huge computation requirement of MPINN has exceeded the limitation of memory for our station. The size of hidden layers for 
each subnetwork of FMPINN is set as (60, 80, 60, 60, 60) and the hidden layers’ size for LDLM is set as (400, 500, 300, 300, 300). At 
each training step, we construct the training dataset by sampling 20000 interior points inside the Ω and 5000 boundary points from 
the 𝜕Ω. A testing dataset is given that includes 1600 random points distributed in Ω. The related experiment results are plotted in 
Fig. 14 and listed in Table 12. Additionally, the point-wise error for the FMPINN model evaluated on 1600 sample points is projected 
into a rectangular region with mesh size 40 ×40. Noting that the mapping is only aimed at visualizing, it is independent of the actual 
coordinates of those points.

For an eight-dimensional problem, the FMPINN still can obtain a satisfactory solution for (1) with small point-wise absolute error 
and relative error. However, the LDLM1 and LDLM2 both fail to approximate the solution of (1). Additionally, the loss of flux term 
and overall REL show that the FMPINN model is also stable during the training process. The running time of LDLMs is less than that 
20

of FMPINN in Table 12, but their performance is weaker than that of the latter.
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Table 12

The relative error and running time of FMPINN, LDLM1 
and LDLM2 for Example 6.

Method FMPINN LDLM1 LDLM2

REL 0.01378 0.5394 0.5054

Total time(s) 21035.011 1757.92 1942.742

6. Conclusion

Physics-informed neural networks (PINN) have gained significant popularity in solving both forward and inverse problems. 
However, the normal PINN with a multi-scale DNN framework is unable to solve multiscale PDEs with rough coefficients. Inspired 
by the mixed finite element method, this work designs a Fourier-based mixed PINN (dubbed FMPINN) by combining a dual (flux) 
technique and Fourier decomposition to solve a class of elliptic multi-scale PDEs. By incorporating the loss of the flux term into 
the loss function, our model achieves favorable stability and robustness. To handle multi-frequency contents, a Fourier activation 
function has been used to address the input data transformed radially by different frequency factors, and a sub-network is designed 
to match the target function, this strategy can improve the accuracy and convergence rate for the FMPINN method. Compared to 
the previous works of PINN, this novel method skillfully casts the original problem into two first-order systems, it will overcome the 
shortcomings of the computational burden for high-order derivatives in DNN and the ill-condition of neural tangent kernel matrix 
resulting from the rough coefficient. Computational results show this novel method is feasible and efficient for solving this multi-

scale equation with an inhomogeneous coefficient in various dimensional spaces. In the future, we aim to extend this novel network 
architecture, incorporating Fourier theory and lower-order mixed schemes, to tackle more complex multiscale problems.
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