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Abstract 

Equilibrium scour depth (S) of seabed is critical to the safety of offshore pipelines which is one 

of the most important topics in ocean engineering. Compared to sands, few experiments have 

been done for silty seabed. In the present work, scour experiments under wave-only action were 

performed for both sandy and silty seabeds. Together with the data from literature, the most 

abundant dataset at the present stage is established. Based on this, two practical formulas 

for S were obtained with adaptive robust regression (ARR) from a data-driven perspective. One 

is for sands only that is related to the Keulegan–Carpenter (KC) number, pipeline-seabed gap 

and grain size of sands. The other is a more generalized model for both sands and silts, which 

is related to the KC number and sediment type that is distinguished by introducing a dummy 
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variable. The formulas outperform the commonly-used process-based and data-driven models 

while also showing good interpretations in physical meaning. For silts from the Yellow River 

Delta, the S in silts is generally 1.2 times of that in sands. The better performance is attributed 

to (1) the outliers in the dataset are effectively handled with ARR; (2) the most abundant dataset. 

Keywords 

cohesive sediments; wave-flume experiments; outliers; adaptive robust regression; dummy 

variable; Yellow River Delta 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Submarine pipelines are important marine installations for the transportation of oils and 
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gases in the ocean, of which the stability is of great significance to ocean engineering. Seabed 

scour beneath pipelines is the most common threat to pipeline security (Sumer and Fredsøe, 

2002; Zhao et al., 2021). Without a precise prediction of the scour depth, the protection design 

of submarine pipelines will be inappropriate and possibly cause damage to the pipelines (Dong 

et al., 2017; Fan et al., 2022). 

Significant efforts have been devoted to establishing process-based (i.e., physical) models 

for predicting the equilibrium scour depth (S) beneath pipelines by clarifying the physical 

processes that determine sediment motions. The most commonly-employed empirical formula 

was fitted by sand data with d50 (median particle size of sediment) values of 0.58, 0.36, and 

0.18 mm and for a pipe in contact with the bed (e/D=0; a negative value refers to burial in the 

present paper) by Sumer and Fredsøe (1990) (SF1990 hereinafter), in which the ratio of the S 

to the pipeline diameter (D) is related to the KC number for live-bed situations (𝜃𝜃 > 𝜃𝜃cr): 

  S/D = 0.1√𝐾𝐾𝐾𝐾,          𝜃𝜃 > 𝜃𝜃cr,   (1) 

where KC is the Keulegan–Carpenter number, which is computed from Eq. (13) hereinafter, 𝜃𝜃 

is the Shields parameter and 𝜃𝜃cr is the critical Shields parameter for sediment entrainment, 

which is computed from Eq. (31) hereinafter. 

Cevik & Yuksel (1999) modified Eq. (1) to estimate the wave-induced scour around 

pipelines on a horizontal bed based on their experiments and those of SF90 and Lucassen (1984) 

as: 

𝑆𝑆
𝐷𝐷

= 0.11𝐾𝐾𝐾𝐾0.45, (2) 

Pu et al. (2001) studied the effect of various soil materials (d50=0.68, 0.47, 0.20, and 

0.0047 mm) on S/D for both live-bed and clear-water (𝜃𝜃 < 𝜃𝜃cr) conditions and proposed the 

following relationship: 

𝑆𝑆
𝐷𝐷

= 𝐵𝐵 ∗ 𝐾𝐾𝐾𝐾m, (3) 

where m is a constant related to bed materials (e.g., m=3.18 for a sandy bed) and B is a function 

of e/D (the initial pipe position with respect to the bed), which appears to be an important 

parameter in determining S (Sumer and Fredsøe, 1990). The shape of this equation is similar 

to that of Eq. (1), but the exponent m=3.18 for sandy beds is quite different from m=0.5 in Eq. 

(1). In addition, Pu et al. (2001) pointed out that for sandy beds, B increases with e/D. This is 
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contradictory to the case in Eq. (4) proposed by Sumer and Fredsøe (2002) for various e/D 

values in live-bed conditions, according to their experiments and the data of Lucassen (1984): 

𝑆𝑆
𝐷𝐷

= 0.1𝐾𝐾𝐾𝐾0.5exp (−0.6 𝑒𝑒
𝐷𝐷

), -0.25 D ≤ e ≤ 1.2 D, (4) 

this model suits the scenario in which the pipe is installed at a depth of 0.25 D at the erodible 

bed up to 1.2 D higher than the bed surface (Mousavi et al., 2009). From the perspective of Pu 

et al. (2001), here, 𝐵𝐵 = 0.1 ∗ exp (−0.6 𝑒𝑒
𝐷𝐷

), i.e., B decreases with e/D; thus, S/D decreases with 

e/D, contradicting the opinion of Pu et al. (2001)(i.e., for sandy beds, B increases with e/D). 

Mousavi et al. (2009) found that when the primary installation depth (initial gap) of the 

pipe, e, exceeds a specified depth, no scouring occurs underneath the pipe in cases of small KC 

numbers (i.e., the effect of wave-seabed interactions is rather low), which is the case in the 

offshore area where the waves are in the transition zone or deep water: 

𝑆𝑆+|𝑒𝑒|
𝐷𝐷

= 0.1𝐾𝐾𝐾𝐾0.5, for KC < 6, (5) 

As only buried (e/D＜0) or no gap (e/D＝0) data were considered in Mousavi et al. (2009), 

when the pipe was buried in the seabed, |𝑒𝑒|＞0; thus, S was reduced for the same KC number 

according to Eq. (5). This result indicates that burial depth (e) reduces scour, thereby supporting 

the conclusion of Sumer and Fredsøe (2002). 

The abovementioned works are all from a process-based perspective; however, with more 

sufficient data on pipeline scour from the worldwide community, data-driven models have 

emerged as an alternative to process-based models. Machine learning approaches, such as 

artificial neural networks (ANNs), have been used to increase the accuracy of scour depth 

prediction (Kazeminezhad et al., 2010). Kızılöz et al. (2015) developed models using the feed 

forward back propagation (FFBP) ANN technique for both regular and irregular wave 

conditions. However, two shortcomings of the ANN methods are that they are generally not as 

transparent as physical models, and more importantly, it is difficult to give clear mathematical 

formulas that are practical for scour predictions. One step forward was achieved by the 

statistical learning works of Etemad-Shahidi et al. (2011), who proposed an M5’ model tree 

that can provide understandable formulas, 
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𝑆𝑆
𝐷𝐷

= 3.344𝐾𝐾𝐾𝐾0.512𝜃𝜃1.296 exp �−2.32 𝑒𝑒
𝐷𝐷
�,  for 𝜃𝜃 ≤ 0.064, (6) 

𝑆𝑆
𝐷𝐷

=

⎩
⎨

⎧0.149𝐾𝐾𝐾𝐾0.477𝜃𝜃0.121 exp �−0.472 𝑒𝑒
𝐷𝐷
�  for 𝜃𝜃 > 0.064, and 𝑒𝑒

𝐷𝐷
≤ 0.145

 
0.048𝐾𝐾𝐾𝐾0.782𝜃𝜃0.121 exp �−0.942 𝑒𝑒

𝐷𝐷
�  for 𝜃𝜃 > 0.064, and 𝑒𝑒

𝐷𝐷
> 0.145

 

, (7) 

and Sharafafi et al. (2018), who proposed the following formulas for clear-water and live-bed 

scour regimes: 

𝑆𝑆
𝐷𝐷

= 4.17𝐾𝐾𝐾𝐾0.72𝜃𝜃1.55 exp �−3.9 𝑒𝑒
𝐷𝐷
�,  for 𝜃𝜃 ≤ 0.064, (8) 

𝑆𝑆
𝐷𝐷

=

⎩
⎨

⎧0.149𝐾𝐾𝐾𝐾0.42𝜃𝜃0.08 exp �−0.472 𝑒𝑒
𝐷𝐷
�   for 𝜃𝜃 > 0.064, and 𝑒𝑒

𝐷𝐷
≤ 0.145

 
0.073𝐾𝐾𝐾𝐾0.45𝜃𝜃0.17 exp �−0.094 𝑒𝑒

𝐷𝐷
�   for 𝜃𝜃 > 0.064, and 𝑒𝑒

𝐷𝐷
> 0.145

 

. (9) 

However, most of the aforementioned studies focused on sandy seabeds. Zhang et al. 

(2019) found that the wave-induced seepage effect in a silty seabed has some promoting effect 

on the initial scour process. To date, few quantitative studies have been performed on scour in 

silts. Therefore, studies dedicated to the field assessment of scouring processes in cohesive 

seabeds still have to resort to formulas established for noncohesive sediments (Xu et al., 2012). 

Postacchini and Brocchini (2015) explored the understanding and modelling of scouring 

processes in cohesive seabeds based on dimensional analysis and derived a formula for S/D. 

To the best of our knowledge, no existing work has explored the difference in pipeline scour 

between cohesive and noncohesive sediments from a data-driven perspective. 

To this end, a series of laboratory experiments for sandy and silty seabed scouring around 

a pipeline under waves were conducted in the present study. Combined with the data collected 

from published literature, the most complete dataset for scour under pipelines in regular waves 

was established by the present paper. Then, two statistical models were formed based on the 

experimental data (22 sets) and data collected from the literature (182 sets). Adaptive robust 

regression, which can handle the outliers in the original dataset, was introduced for modelling. 

The first model was trained for sands and tested as the optimal model for sands comparing to 

the existing popular sand scour models. The second model was trained for both sands and silts 

together; therefore, a generalized model for scour under pipelines in both sands and silts was 

developed for the first time. The model was proven to outperform popular process-based or 

data-driven models. The influence of sediment types on scour depth was detected from a data-



 

 6 

driven perspective for the first time. 

The following parts of the paper are organized as follows: Section 2 describes our 

laboratory experiments; Section 3 gives the methodology of the statistical learning; Section 4 

presents the dataset for statistical learning, which consists of the present experimental data and 

data from the literature; Section 5 gives the data modelling processes in which a formula for 

sand scour and a more generalized model for both sands and silts are derived; Section 6 gives 

the validation of the proposed models with the test sets; this paper ends with a few conclusions 

in Section 7. The general flow of the present paper is also illustrated in Figure A1 in the 

Appendix. 

2. Laboratory physical experiments 

In this section, the experimental setup and procedure are given, and the key parameters 

are calculated. 

2.1 Experimental setup 

Flume: The experiments were carried out in a large wave flume at the Drilling Technology 

Research Institute of the Sheng-li Petroleum Oilfield Administration Bureau, Dongying, 

Shandong, China. The wave flume is 62 metres long, 1.5 metres wide and 1.1 metres high, with 

an maximum working water depth of 0.70 m (Figure 1). A wave-maker is installed at one end 

of the flume, which is composed of a push plate and a control system. At the other end of the 

flume, a wave dissipation system is installed. It is composed of an artificial gravel beach with 

a wire mesh covering it. The gravel is used to absorb the incident wave energy for wave 

elimination, thereby minimizing the wave reflections to avoid affecting the designed wave 

parameters. The wire mesh is used to prevent the gravel from excessive displacement in case 

it influences the wave-eliminating effect. 

A soil tank 2.4 m long, 1.5 m wide, and 0.5 m deep is located in the middle of the flume. 

The position of the soil tank is 45 m away from the wave generator (Xu et al., 2010). 



 

 7 

 
Figure 1. Experimental setup. 

Pipelines: Circular pipeline models that are 1.49 m in length and have three different 

diameters (3.5, 4 and 5 cm) are artificially placed on the soil bed. The pipeline is made of glass 

fibre reinforced plastic and placed in the centre of the soil tank perpendicular to the wave 

direction. Both ends of the pipeline are fixed by two rigid rods attached to the flume bottom to 

prevent both the horizontal and vertical displacement of the pipeline when the bed is scoured, 

therefore avoiding errors in recording the scour depth. Two initial burial conditions of the 

pipeline, namely, unburied (e/D=0) and half-buried (e/D=-0.5), are considered in the 

experiments. 

Waves: A push plate is mechanically driven to generate regular waves with wave periods 

(Tw) of 0.6-3.5 s by setting the motion frequency on the computer (Zhou et al., 2011). The 

designed wave parameters are summarized in Table 1. 

Table 1. Designed wave parameters. 

Water depth 

(cm) 
Hw (cm) Tw (s) 

e/D  

Unburied Half-buried 

50 8 1.3 0 - 0.5 

50 17 1.9 0 - 0.5 

Sediments and Bedforms: The sediments used in the experiment are commercial soil 

substitutes. The particle size distribution curves of the sediments are measured with a 

Mastersizer 2000 laser particle size analyser. The median diameters of the three types of 

sediments (fine sand, very fine sand, and silt) are d50 = 0.287 mm, 0.057 mm, and 0.033 mm, 

respectively. The particle size distribution curves of the sediment are shown in Figure 2. 
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Figure 2. Particle size distribution curves of the three types of sediments (Xu et al., 2010). 

Similarity Scale: Considering that the field waves, water depth and pipeline geometries 

in the Chengdao sea region (Yellow River Delta) where many key pipelines (of the Shengli 

oilfield) distributed were generally 20 times of the geometries that could be simulated in our 

wave flume, the geometrical scale was taken as 1:20 (Zhang et al., 2019). 

Table 2 Similarity scale of the present experiments 

Geometrical scale is 1:20 Hw h D Max.(S/D) 

Experimental geometry (m) 0.08 0.17 0.50 0.035 0.04 0.05 0.75 

Field geometry (m) 1.60 3.40 10 0.70 0.80 1 0.80 

Note: The geometrical scale of 1:20 successfully reproduced experimental results of S/D  

basically on a scale of 1:1 with field measurement (Xu et al., 2012), this, to some extent, proves 

the rationality of the selected experimental similarity scale. Here h is water depth, Hw is wave 

height, D is pipeline diameter. 

The wave heights (Hw) of 1.6 m and 3.4 m in Table 2 are well within the normal range of 

Hw in the Chengdao sea; the water depth (h) in this region also fluctuates around 10 m (Zhang 

et al., 2021a, b). The pipeline diameters (D) are normally 0.2-1 m (Zhang, 2019). The S/D 

results from our experiments are within 0-0.75 which are well consistent with the field survey 

results (maximum S/D was 0.80, mostly＜0.60) of Xu et al. (2012) (see Table 2). This proves 

that our design of similarity scale is reasonable. 
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2.2 Experimental procedure 

The experimental procedure is outlined as follows: 

(1) The test soils were mixed with water to form a slurry, which was then backfilled into 

the soil tank to form a freshly deposited (remodelled) seabed. The seabed was properly 

levelled to form an initially flat surface. 

(2) The flume was filled slowly with water to a depth of 50 cm. 

(3) Small waves were initiated to accelerate the consolidation of the freshly deposited 

seabed. 

(4) Waves were stopped for the static consolidation of the seabed until the pore pressure 

stabilized. 

(5) The pipeline was placed horizontally in the centre of the soil tank, both ends were 

fixed to two rigid rods emerging from the bed surface to ensure that the pipeline 

elevation did not change to prevent error when recording the scour depth. 

(6) The waves were switched on and off according to the schedule in Table 3, and the 

wave parameters were recorded with a wave gauge. Because the waves deformed after 

a period of time, the waves were generated intermittently according to the schedule in 

Table 3, i.e., waves were stopped after a period of time and continued after the water 

surface recovered to flat. 

(7) Waves were finally stopped until no significant variation in the scour depth beneath 

the pipeline was observed. 

(8) The equilibrium scour depth under the pipeline was measured from the side of the 

flume. Although the equilibrium scour depths were in 3D patterns, we have visually 

confirmed that the measured value from the side wall of the flume is consistent with 

the equilibrium scouring depth in the three-dimensional structure. The major 

difference between 2D and 3D is the local structure of the scour holes, not the 

equilibrium scour depths. Nevertheless, our future works will try to use 3D imaging 

technique of the scour hole to determine equilibrium scour depth. 

(9) The pipeline was uninstalled, the bed surface was restored to level, and the next test 

was continued. 
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Table 3. Experimental procedure and corresponding wave parameters. 

Exp. No. Hw (cm) Tw (s) Duration* (min) 

G-1-1-03 17 1.9 20+(15)+20 

G-1-1-06 17 1.9 12+(18)+15+(10)+10 

G-1-2-01 8 1.3 15+(81)+15+(73)+15+(55)+17+(5)+17 

G-1-2-02 17 1.3 15+(82)+15+(53)+15+(52)+20 

G-1-2-03 17 1.9 15+(52)+15+(62)+15+(55)+20 

G-1-2-04 8 1.3 55+(41)+55 

G-1-2-05 17 1.3 15+(55)+15+(4)+15+(44)+15+(5)+15 

G-1-2-06 17 1.9 15+(56)+15+(53)+15+(56)+15+(6)+15 

G-1-2-07 17 1.9 15+(12)+20 

G-2-1-03 17 1.9 15+(11)+15+(9)+20 

G-2-1-06 17 1.9 15+(14)+15+(6)+15 

G-2-2-03 17 1.9 10+(43)+10+(101)+10+(?)+10 

G-2-2-06 17 1.9 15+(35)+15+(32)+20 

G-2-2-07 17 1.9 15+(14)+15+(9)+15 

G-3-1-03 17 1.9 10+(3)+15+(5)+15+(5)+15 

G-3-1-06 17 1.9 10+(7)+10+(5)+10+(5)+10+(4)+10+(12)+15 

G-3-2-01 8 1.3 15+(6)+15+(8)+17 

G-3-2-02 17 1.3 15+(6)+20+(8)+20 

G-3-2-03 17 1.9 15+(8)+15+(5)+15+(5)+15 

G-3-2-04 8 1.3 15+(6)+15+(4)+15+(4)+15+(5)+20 

G-3-2-06 17 1.9 15+(5)+15+(6)+15+(5)+15 

G-3-2-07 17 1.9 10+(5)+10+(6)+10+(6)+10+(5)+10 

* Duration of 20+(15)+20 means that the waves were active for an initial 20 minutes, followed 

by a 15-minute rest and then another 20-minute wave action. 

2.3 Determination of key parameters 

Several key parameters, which are potentially important for pipeline scour (e.g., the 
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Keulegan-Carpenter (KC) number, Shields parameter, Ursell parameter etc), were determined 

as follows: 

(1) Wavelength L 

For a limited water depth (1/20＜h/L＜1/2), the wavelength (𝐿𝐿) was calculated by the 

linear wave dispersion equation (Dean and Dalrymple, 1991) as: 

𝐿𝐿 = g
2π
𝑇𝑇w2tanh(2π

𝐿𝐿
ℎ), (10) 

where g is the acceleration due to gravity and h is the still water depth. 

(2) Maximum water particle velocity on the bed in the absence of the pipe, Um 

Um was calculated based on the second-order Stokes wave theory: 

𝑈𝑈m = π𝐻𝐻w
𝑇𝑇wsinh(𝑘𝑘ℎ)

+ 3
4

π2𝐻𝐻w2

𝑇𝑇w𝐿𝐿sinh4 (𝑘𝑘ℎ)
, (11) 

where k = 2π/L is the wave number. 

(3) Ursell parameter, Ur, is a parameter that is commonly used to evaluate the wave 

nonlinearity. As wave nonlinearities influence the vortex formation and development around 

an obstacle, hence, it also influences the scour depth (Corvaro et al., 2018). The Ursell number 

was calculated by 

Ur=HwL2/h3 (12) 

where Hw is the incident wave height, h is the water depth, L is wavelength. For long waves 

(L≫h) of small height Hw, i.e. Ur ≪ 32π2/3 ≈ 100, the second-order Stokes theory is applicable. 

Here, Ur was found to range from 3.41-19.75, therefore, the accuracy of using the second order 

Stokes wave theory was further evaluated. We find that using second order Stokes wave theory 

improves ca. 11 % from linear theory, which means further improvement will be less than 11 % 

even using higher-order Stokes theory. Therefore, second order Stokes wave theory was 

employed in the present paper, to keep consistent with the previous paper of Zhou et al. (2011) 

(Eq. 2 therein) which was based on the same experimental data. 

(4) Keulegan-Carpenter (KC) number (Sumer and Fredsøe, 1990) 

𝐾𝐾𝐾𝐾 = 𝑈𝑈m𝑇𝑇w
𝐷𝐷

, (13) 

(4) Shields parameter 𝜃𝜃 (Nielsen et al., 2001) 

𝜃𝜃 = 𝑈𝑈∗2

g(𝜌𝜌𝑠𝑠𝜌𝜌 −1)𝑑𝑑50
, (14) 
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where 𝜌𝜌𝑠𝑠 is the density of sediment particles and 𝜌𝜌 is the density of seawater. 

(5) Friction velocity U* 

𝑈𝑈∗ = �𝜏𝜏w 𝜌𝜌⁄ , (15) 

(6) Wave shear stress 𝜏𝜏w (Nielsen, 2009, p 213) 

𝜏𝜏w = 0.5𝜌𝜌𝑓𝑓w𝑈𝑈m2 , (16) 

(7) Wave friction factor 𝑓𝑓w (Nielsen, 2009, p 214) 

𝑓𝑓w =exp[5.5(2.5𝑑𝑑50
𝐴𝐴

)0.2 − 6.3], (17) 

(8) Semi-excursion of wave particles at the bottom, A (Nielsen, 2009, p 216) 

𝐴𝐴 = √2𝑈𝑈m
2π 𝑇𝑇w⁄ , (18) 

3. Statistical learning method 

The statistical learning method and the evaluation criteria of the optimal model are 

elaborated in this section. Adaptive robust regression (ARR) is employed for data modelling, 

as it is good at handling outliers. The Akaike information criterion (AIC) is used as the optimal 

model evaluation criterion, which is detailed in subsection 3.2. 

3.1 Adaptive robust regression 

In statistical modelling, given a dataset (xi, yi), xi∈Rd, R is the real number field, d is the 

dimension of xi, yi∈R, i=1, 2..., n (n is the amount of the sample), an ordinary linear regression 

model can be given as 

𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽 + 𝜎𝜎𝜇𝜇𝑖𝑖, (19) 

where the dependent variable is yi; the independent variable is xi = (1, xi1..., xid)′, the upper 

corner mark 𝑇𝑇  means the transpose of matrix; the scaled noise is 𝜇𝜇𝑖𝑖 , σ (>0) is the scale 

coefficient of the noise [In generalized linear model, the noises are assumed to comply with a 

standardized distribution with a scale. Corresponding to the unit of yi, the value of σ would 

change to scale noises to follow a standardized distribution]; and the coefficient of regressor is 

β = (β0, β1..., βd)′. A special case of estimation for β is the least squares (LS) estimation with 

the scale parameter σ =1: 

�̂�𝛽 = (∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑇𝑇)−1(∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝑦𝑦𝑖𝑖𝑇𝑇), (20) 

where �̂�𝛽 means the estimation of 𝛽𝛽.  
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However, the LS approach can not effectively handle the presence of outliers for data 

modelling (Zhang et al., 2021c; 2022). Outliers generally introduce large errors, which 

significantly dominate the parameter estimation with the LS approach (Huang et al., 2015). For 

example, assuming 100 residuals for normal samples range from −0.5 and 0.5 while the only 

residual from the outlier is 100. Using the general LS approach to calculate the loss, the 

contribution from one outlier is much larger than the total contribution from the normal samples; 

correspondingly, the estimation is unreliable. Therefore, an M-estimation was proposed by 

Huber et al. (1973) to handle outliers to obtain a robust estimation. The M-estimation based on 

Huber’s loss function minimizes the following formulation (Maronna, 1976): 

�̂�𝛽 = Argmin
𝛽𝛽

∑ 𝜌𝜌(𝑦𝑦𝑖𝑖−𝑥𝑥𝑖𝑖
𝑇𝑇𝛽𝛽

𝜎𝜎�
)n

𝑖𝑖=1 , (21) 

where Argmin means to minimize the following formula, with a given estimate of the scale 

parameter 𝜎𝜎�, the dispersion function ρ(·) for Huber’s loss function is given as 

𝜌𝜌(𝜖𝜖) = �
1
2
𝜖𝜖2，|𝜖𝜖| ≤ 𝜏𝜏

|𝜖𝜖|𝜏𝜏 − 𝜏𝜏2

2
，|𝜖𝜖|  > 𝜏𝜏

, 
(22) 

where a hyper-parameter τ is used to control the loss calculation, when the absolute value of 

the residual 𝜖𝜖 is larger than τ, the l1-norm loss function which is robust to outliers is used; 

otherwise, the traditional l2-norm loss function is employed. The gradient of ρ(𝜖𝜖), i.e., 𝛹𝛹(𝜖𝜖) 

can be obtained as 

𝛹𝛹(𝜖𝜖) = �
𝜖𝜖，|𝜖𝜖| ≤ 𝜏𝜏

Sign(𝜖𝜖) × 𝜏𝜏，|𝜖𝜖| > 𝜏𝜏 
. 

(23) 

where Sign(.) is the sign function, which equals to 1 when 𝜖𝜖 > 𝜏𝜏 and equals to -1 when 𝜖𝜖 <

−𝜏𝜏. 

Therefore, the robust estimator of β can be achieved by solving the equation 

∑ 𝑥𝑥𝑖𝑖𝛹𝛹 �𝑦𝑦𝑖𝑖−𝑥𝑥𝑖𝑖
𝑇𝑇𝛽𝛽

𝜎𝜎�
� = 0𝑛𝑛×1

𝑛𝑛
𝑖𝑖=1 , (24) 

It can be found that two hyper-parameters, σ and τ, would determine the performance of 

these robust estimators. Following the recommendation of Fu et al. (2020), the robust estimator 

of 𝜎𝜎� is calculated by the median absolute deviation estimator as 

𝜎𝜎� = Median(�𝑦𝑦𝑖𝑖−𝑥𝑥𝑖𝑖
𝑇𝑇𝛽𝛽�)

0.6745
, (25) 
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where Median(.) is the median function which automatically ranks the order of (.) and selects 

median. For the second parameter τ, according to the work of Wang et al. (2007), a data-

dependent tuning optimal estimated �̂�𝜏∗ is used in our model as 

�̂�𝜏∗ = Argmax
𝜏𝜏

�∑ 𝐼𝐼(|�̂�𝑒𝑖𝑖|≤𝜏𝜏)n
𝑖𝑖=1 �2

n∑ �𝐼𝐼(|�̂�𝑒𝑖𝑖|≤𝜏𝜏)Ψ2(�̂�𝑒𝑖𝑖)+𝜏𝜏2𝐼𝐼�|�̂�𝑒𝑖𝑖|＞𝜏𝜏��n
𝑖𝑖=1

, (26) 

where Argmax means to maximize the following formula; �̂�𝑒𝑖𝑖= (yi−𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽)/𝜎𝜎�; I(.) is an indicator 

function which equals to 1 if the condition (.) is satisfied, otherwise, I(.)=0. This tuning method 

is also popular in environmental modelling applications, in which the recommended sequence 

for τ ranges from 0 to 3 with an interval of 0.1 (Wang et al., 2018; Callens et al., 2020).  

Finally, the training procedure for our robust regression with a tuning hyper-parameter τ 

can be implemented as follows: 

Step 1. Obtain initial estimates of β with a median (i.e., l1-norm) regression without the 

scale parameter as 

�̂�𝛽 = Argmin
𝛽𝛽

∑ �𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽�n
𝑖𝑖=1 , (27) 

to obtain the initial residual for the following optimization steps. 

Step 2. Obtain the estimate of scale parameter 𝜎𝜎� by Eq. (25). 

Step 3. Obtain the tuning hyper-parameter �̂�𝜏∗ by solving Eq. (26) with the recommended 

τ sequence. 

Step 4. Obtain the new β estimate with estimated 𝜎𝜎� and tuning �̂�𝜏∗ by solving Eq. (24). 

3.2 Model selection 

This subsection illustrates the procedure of model selection for our adaptive robust 

regression with the Akaike information criterion (AIC), which can evaluate the performance of 

each model based on the provided data. Akaike Information Criterion (AIC) from information 

theory is an indicator of the prediction error to measure the quality of the statistical models for 

the investigated data (Akaike, 1974). The AIC can effectively balance the performance of 

model fitting and the simplicity (i.e., it can handle the risks of overfitting and underfitting; 

overfitting means the model is too much dependent on the training dataset, which limits its 

application to other scenarios; underfitting means the model have not included all key 

parameters which limits the model performance). Considering the advantage of balancing the 

over- and under-fitting, AIC method was employed for model selection. The definition of AIC 
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is given by Akaike (1974) as: 

AIC = −2 log(−𝑄𝑄) + 2𝐾𝐾, (28) 

where K=d+3 is the number of independently adjusted parameters in the model with d the 

dimension of xi; Q is the maximum likelihood function value for the adaptive robust regression: 

𝑄𝑄 = ∏ 𝑓𝑓(𝑒𝑒𝑖𝑖)n
𝑖𝑖=1 = 1

𝐶𝐶𝑛𝑛(𝜏𝜏�∗,𝜎𝜎�)
exp (−∑ 𝜌𝜌𝜏𝜏�∗,𝜎𝜎�

n
𝑖𝑖=1 (𝑒𝑒𝑖𝑖)), (29) 

where 𝑓𝑓(. ) is the probability density function, 

𝐾𝐾(�̂�𝜏∗,𝜎𝜎�) = 𝜎𝜎�√2π[2Φ(�̂�𝜏∗) − 1] + 2𝜎𝜎�
𝜏𝜏�∗

exp (− (𝜏𝜏�∗)2

2
), (30) 

where Φ(·) is the cumulative probability function of the standardized normal distribution. For 

model selection with the AIC, the model with the smallest AIC is recommended as the 

preferable model (Hastie et al., 2009). Therefore, there is a counterbalance between Q and K 

in Eq. (28). 

4. Dataset for statistical regression modelling 

The dataset used in this study consists of two parts: our experimental data for sands and 

silts (Table 4) and the data for sands from the literatures (Table 5). Considering that silt data 

are rare, it is expected that some comparisons can be made with abundant sand data. The entire 

training dataset is given in the Appendix. 

4.1 Experimental results 

Our laboratory experiments yield 13 data points for silts and 9 for sands. 

Table 4. Results of our experiments. 

Parameters h Hw Tw L Um D d50 𝜽𝜽 KC S/D S 

No. Exp. 

No. 

cm cm s m m/s m mm Dimensionless cm 

1 G-1-1-
03 

50 17 1.9 3.81 0.346 0.050 0.287 0.158 13.2 
0.42 2.1 

2 G-1-1-
06 

50 17 1.9 3.81 0.346 0.050 0.287 0.158 13.2 
0.28 1.4 

3 G-1-2-
01 

50 8 1.3 2.31 0.108 0.040 0.287 0.030 3.5 
0.23 0.9 

4 G-1-2-
02 

50 17 1.3 2.31 0.232 0.040 0.287 0.098 7.6 
0.25 1.0 
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5 G-1-2-
03 

50 17 1.9 3.81 0.346 0.040 0.287 0.158 16.4 
0.22 0.88 

6 G-1-2-
04 

50 8 1.3 2.31 0.108 0.040 0.287 0.030 3.5 
0.00 0 

7 G-1-2-
05 

50 17 1.3 2.31 0.232 0.040 0.287 0.098 7.6 
0.00 0 

8 G-1-2-
06 

50 17 1.9 3.81 0.346 0.040 0.287 0.158 16.4 
0.00 0 

9 G-1-2-
07 

50 17 1.9 3.81 0.346 0.035 0.287 0.158 18.8 
0.29 1 

10 G-2-1-
03 

50 17 1.9 3.81 0.346 0.050 0.057 0.454 13.2 
0.54 2.7 

11 G-2-1-
06 

50 17 1.9 3.81 0.346 0.050 0.057 0.454 13.2 
0.40 2.0 

12 G-2-2-
03 

50 17 1.9 3.81 0.346 0.040 0.057 0.454 16.4 
0.75 3.0 

13 G-2-2-
06 

50 17 1.9 3.81 0.346 0.040 0.057 0.454 16.4 
0.33 1.3 

14 G-2-2-
07 

50 17 1.9 3.81 0.346 0.035 0.057 0.454 18.8 
0.66 2.3 

15 G-3-1-
03 

50 17 1.9 3.81 0.346 0.050 0.033 0.680 13.2 
0.50 2.5 

16 G-3-1-
06 

50 17 1.9 3.81 0.346 0.050 0.033 0.680 13.2 
0.26 1.3 

17 G-3-2-
01 

50 8 1.3 2.31 0.108 0.040 0.033 0.103 3.5 
0.00 0 

18 G-3-2-
02 

50 17 1.3 2.31 0.232 0.040 0.033 0.377 7.6 
0.10 0.4 

19 G-3-2-
03 

50 17 1.9 3.81 0.346 0.040 0.033 0.680 16.4 
0.30 1.2 

20 G-3-2-
04 

50 8 1.3 2.31 0.108 0.040 0.033 0.103 3.5 
0.18 0.7 

21 G-3-2-
06 

50 17 1.9 3.81 0.346 0.040 0.033 0.680 16.4 
0.60 2.4 

22 G-3-2-
07 

50 17 1.9 3.81 0.346 0.035 0.033 0.680 18.8 
0.34 1.2 

Note: Literature data are based on non-homogeneous particle size distribution, same as the 

scenario in our experiments. However, the existing researches in this field normally used d50 

as the representative parameter in the analysis. Therefore, we can only collect the d50 from 

literatures. Future work will pay attention to the influence of non-homogeneous particle size 

distribution on scouring process. 
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4.2 Collected data from the literature 

In addition to the experimental results above, more data are collected from the literature 

to form a larger dataset for statistical learning. The source of the collected data is given in Table 

5, while the data are given in the Appendix. All literature datasets obtained are under the wave-

only actions, same as the scenario in our experiments. 

Table 5. Summary of the data used in the present study. 

Dataset Experiment performer Data quantity Literature that provided the 

data 

Trainin

g set 

for the 

sand 

model 

or the 

general

ized 

model 

The present experiment 22 (9 sands+13 

silts) 
 

Sumer and Fredsøe (1990) 25 Sumer and Fredsøe (1990) 

Sumer and Fredsøe (1996) 19 

Cheng et al. (2020) Kim et al. (2011) 45 

Mattioli et al. (2013) 9 

Zhang et al. (2017) 7 Zhang et al. (2017) 

Dogan and Arisoy (2015) 20 Dogan and Arisoy (2015) 

Zang et al. (2019) 36 Zang et al. (2019) 

Fredsøe et al. (1992) 4 Fuhrman et al. (2014) 

Subtotal 187  

Test set 

for 

sands 

Mousavi et al., (2009) 9 
Kazeminezhad et al. (2010) 

Pu et al., (2001) 8 

Subtotal 17  

Total  204  

Note: The collected data are detailed in the Appendix. The S/D of Zhang et al. (2017) is the 

average of Sef, Sep, and Seb therein. 

4.3 Data comparability 

To use a collected dataset, it is necessary to evaluate the comparability of data from 

different works. As the parameters involved are all nondimensional, the comparability is 
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generally good, except for the Shields parameter 𝜃𝜃 (Eq. 14), which shows a large deviation in 

different data origins. This deviation can be explained by Eqs. (14-18). A wave friction factor 

𝑓𝑓w is necessary for the computation of 𝜃𝜃, but not all the literature chose the same formula for 

𝑓𝑓w. To make all the 𝜃𝜃 values comparable, 𝜃𝜃 is recalculated in the present work for the entire 

dataset. 

The judgement of live-bed or clear-water regimes is also considerred here. Sumer and 

Fredsøe (1990) pointed out that the effect of the Shields parameter on S is quite weak for live-

bed situations, while Etemad-Shahidi et al. (2011) found that the Shields number is very 

important in clear-water conditions. For sandy sediments, 𝜃𝜃cr is normally calculated with Eqs. 

(31-32) (Soulsby, 1997): 

𝜃𝜃cr = 0.24
𝑑𝑑∗

+ 0.055 (1 − exp(−0.02𝑑𝑑∗)), (31) 

where d∗ is the dimensionless diameter of the bed sand: 

𝑑𝑑∗ = 𝑑𝑑50((𝜌𝜌𝑠𝑠−𝜌𝜌)g
𝜌𝜌𝜈𝜈2

)1/3, (32) 

where ν=10-6 m2/s is the kinematic viscosity. 

It is found that 𝜃𝜃cr=0.06 for the dataset in the present study, which is quite consistent with 

the dividing number of 𝜃𝜃cr=0.064 in previous works for sands as referred in the introduction 

(Eqs. 6-9). However, the criterion of Soulsby (1997) was for sands. As far as the authors’ 

concern, no universal criterion for the entrainment of cohesive sediments is available. But 

according to the Shields curve, the 𝜃𝜃cr for silts should be even smaller than sands, thus most 

of the cases in the present study are in live-bed regime. Considering the two points mentioned 

above, we tried to train the model without distinguishing the two regimes, to test if the transport 

regime is critical. 

The model scale of the present experiment was 1:20, while the scales of the other 

experiments from literature may not be the same. In this inevitable situation of data from 

different literatures, we tried to use dimensionless parameters. If the finally-derived models 

choose the dimensionless parameters, one can believe the different scalings in the present study 

has little impact. 

The other parameters collected from the literature show good comparability and therefore 

are reliable for analysis and modelling. The last point that needs to be declared is that the data 
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used in the present work are all for buried (e/D＜0) or in-contact (e/D=0) pipelines, and no 

suspended pipeline scenarios are included (e/D＞0). 

5. Data-driven model development 

In this section, firstly, different transformations were attempted for all the investigated 

parameters (independent variables) to obtain their best correlations with the response variable 

(ln S/D). Secondly, a series of robust regression models were built by covering any permutation 

and combination of the parameters using the sand dataset, correspondingly, an optimal formula 

for S/D in sands was obtained based on the AIC value. Outliers in the dataset were detected 

and handled with a newly-proposed adaptive robust regression to improve the modeling 

accuracy. Thirdly, the optimal formula for sands was tested for predicting the silt data, but the 

results were not good enough. Therefore, fourthly, another training was performed with the 

combined dataset of the silt data and the original sand data. A dummy variable η was introduced 

to distinguish the sediment types. An optimal prediction formula was finally found for both 

sandy and silty seabeds. 

5.1 Data pre-processing 

For nonlinear regression, it is a conventional method to firstly deform the variables in 

different forms, find the transformed form which has the the maximum correlation coefficient 

with the dependent variable (ln S/D), then carry out regression modeling. Here, maximum 

correlation coefficient means the largest absolute correlation coefficient between all kinds of 

transformed independent variables and the dependent variable. Different transformations 

(logarithmic and different polynomial transformations with the highest order term from - 1 to 

1 with a step of 0.1) were tried for all the seven independent parameters (Um, wave period Tw, 

pipe diameter D, e/D, grain size d50, Shields parameter θ, and KC) to find the best correlations 

with the response (ln S/D) according to the maximum correlation coefficients. The best 

transformations for the parameters are listed in Table 6. The transformed variables are denoted 

as ln S/D, ln KC, e/D, ln Um, ln Tw, D-1, ln d50, and θ0.5. 

Table 6. Best transformations for the investigated parameters. 

 Independent variables 

Original parameter Um Tw D e/D d50 θ KC 
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Best transformation form ln Um ln Tw D-1 e/D ln d50 θ0.5 ln KC 

Max correlation 

coefficient 

0.4674 0.5311 0.3642 0.3275 -

0.1483 

0.4369 0.7132 

In addition, for the prediction of silts in Section 5.3, the grain size is divided into two 

types (sands and silts) according to the criterion of d50=0.0625 mm, and a dummy variable η is 

introduced as η = 1 for silts and η = 0 for sands. 

The correlations between all the investigated factors and the response ln S/D are plotted 

in Figure 3. Note that the numbers on the axis of each box are the value range of any two 

variables which are marked in the boxes along the diagonal of Figure 3; the numbers in each 

box are the correlation coefficients between any two variables involved, e.g., 0.71 means that 

the correlation coefficient between ln S/D and ln KC is 0.71. 

 

Figure 3. Correlations between the transformed parameters and the response (ln S/D). Note 

that the numbers on the axis of each box are the value range of any two variables which are 
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marked in the boxes along the diagonal; the numbers in each box are the correlation coefficients 

between any two variables involved, e.g., 0.71 means that the correlation coefficient between 

ln S/D and ln KC is 0.71. η is the dummy variable that is used to identify the type of sediments. 

The asterisk in the figure represents the significance level of the correlation. 

It is worth noting that the specific correlation coefficient between ln S/D and a specific 

variable can be changed when more variables are involved while doing the ARR modeling. 

However, this will not affect the final regression performance in essence, as finding the best 

transformations between ln S/D and a specific variable is just a preparatory step. With the 

respective best transformation form, it is still the scheme that most likely to obtain the best 

nonlinear regression result while all the independent variables are involved, although the 

coefficient and contribution of each parameter will be slightly adjusted automatically in the 

subsequent ARR modeling process. 

In the following ARR statistical modelling work, LS approach was firstly used for 

ordinary regression, then the residuals from the LS approach are examined. If the residuals are 

normal (i.e., residuals follow a normal distribution), then LS approach is enough to solve this 

problem. However, if the residual from the LS regression is not normally distributed, i.e., 

outliers were found by checking with the QQ (quantile-quantile) plot. Our ARR method was 

used to further diagnose the investigated dataset to obtain an optimal model by handling the 

outliers. 

5.2 Model training with only the sand data 

First, the sand dataset was used for the training, and the estimates for the three-parameter 

model with an ordinary regression method (LS approach) are: 

ln �𝑆𝑆
𝐷𝐷
� = 0.51 ln(𝐾𝐾𝐾𝐾) + 3.15 𝑒𝑒

𝐷𝐷
− 0.14 ln(𝑑𝑑50)− 2.49 + 𝜖𝜖, (33) 

with residuals 𝜖𝜖 included. Then, a QQ (quantile-quantile) plot and box plot is used to check 

the distribution of residuals from formula (33) in Figure 4. The quantile-quantile plot is a 

graphical method for determining whether the data samples come from the same population or 

not. The order statistics of the sample are plotted against the corresponding standard values 

from the assumed distribution (Aly and Aydin, 1988). In the left subfigure of Figure 4, when 

the dots well follow the blue line, it means the residuals follow a normal distribution without 
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any outliers; however, when residuals are larger or smaller, i.e., the dots are far away from the 

blue line, outliers exist. In addition, in the right subfigure of Figure 4, according to the box plot, 

it is also apparent that there are many outliers that differ significantly from the rest of the dataset 

(out of the normal range). Therefore, the new adaptive robust regression described in Section 

3 is employed to handle the outliers in the original dataset. 
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Figure 4. QQ (quantile-quantile) plot and box plot for the residuals from the three-parameter 

model with the least squares approach. The presence of outliers was clearly detected. The black 

dots close to the blue (reference) straight line indicate that the corresponding residuals are 

normally distributed. In contrast, when the black dots are beyond the upper left or under the 

lower right of the blue line, the dots are suspicious outliers. 

Our first attempt was to build a model for sands. Therefore, all combinations of the seven 

parameters were investigated using sand data. The corresponding estimates for all the models 

are listed in Table 7. 

Table 7. Coefficient estimates from the adaptive robust regression for sands. 

Model 

No. 
𝝈𝝈 𝝉𝝉 ln KC e/D ln Um ln Tw D-1 ln d50 𝜽𝜽0.5 c AIC 

One-parameter Model 

M1 0.30 0.8 0.52 - - - - - - -2.61 490.64 

Two-parameter Model 

M2 0.24 0.4 0.52 1.72 - - - - - -2.41 667.19 

Three-parameter Model 

M3 0.23 0.9 0.56 1.60 -0.11 - - - - -2.69 500.01 

M4 0.24 0.3 0.54 1.77 - -0.07 - - - -2.41 740.14 

M5 0.24 0.4 0.49 1.65 - - 0.00 - - -2.42 668.75 

M6 0.26 1.0 0.50 1.95 - - - -0.07 - -2.43 433.00 

M7 0.23 0.4 0.54 1.64 - - - - -0.17 -2.42 673.51 

Four-parameter Model 

M8 0.24 0.4 0.61 1.63 -0.13 -0.10 - - - -2.73 672.22 

M9 0.23 0.8 0.54 1.60 -0.08 - 0.00 - - -2.62 522.97 

M10 0.26 0.9 0.54 1.76 -0.08 - - -0.05 - -2.62 470.55 

M11 0.23 0.9 0.56 1.60 -0.12 - - - -0.03 -2.71 505.07 

M12 0.24 0.4 0.51 1.70 - -0.03 -0.00 - - -2.41 669.37 

M13 0.26 1.0 0.54 2.12 - -0.11 - -0.08 - -2.43 444.15 
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M14 0.24 0.3 0.57 1.70 - -0.08 - - -0.19 -2.42 739.33 

M15 0.26 1.0 0.49 1.88 - - 0.00 -0.06 - -2.44 439.06 

M16 0.23 0.4 0.50 1.63 - - 0.00 - -0.05 -2.42 675.28 

M17 0.25 0.9 0.52 1.88 - - - -0.06 -0.09 -2.43 477.18 

Five-parameter Model 

M18 0.25 1.0 0.77 1.76 -0.31 -0.24 -0.00 - - -3.16 446.98 

M19 0.26 1.0 0.59 1.94 -0.10 -0.13 - -0.06 - -2.68 442.77 

M20 0.25 0.9 0.61 1.72 -0.16 -0.11 - - 0.06 -2.80 473.10 

M21 0.25 0.8 0.51 1.76 -0.04 - 0.00 -0.05 - -2.52 509.10 

M22 0.23 0.5 0.53 1.57 -0.07 - 0.00 - -0.00 -2.58 620.65 

M23 0.26 0.9 0.54 1.75 -0.09 - - -0.05 0.01 -2.63 472.76 

M24 0.27 0.9 0.52 2.01 - -0.08 0.00 -0.07 - -2.43 465.55 

M25 0.24 0.4 0.53 1.68 - -0.05 0.00 - 0.11 -2.42 673.14 

M26 0.25 0.9 0.56 2.04 - -0.11 - -0.07 -0.12 -2.44 487.34 

M27 0.26 1.0 0.49 1.88 - - 0.00 -0.06 -0.01 -2.44 439.41 

Six-parameter Model 

M28 0.25 1.0 0.72 1.92 -0.25 -0.23 -0.00 -0.06 - -3.02 449.73 

M29 0.26 1.0 0.77 1.76 -0.32 -0.24 -0.00 - 0.04 -3.02 443.30 

M30 0.26 1.0 0.59 1.93 -0.11 -0.13 - -0.06 0.02 -2.69 444.16 

M31 0.25 0.8 0.51 1.76 -0.04 - 0.00 -0.05 0.01 -2.52 510.87 

M32 0.25 0.9 0.54 2.01 - -0.09 0.00 -0.07 -0.07 -2.44 479.76 

Seven-parameter Model 

M33 0.24 0.8 0.72 1.85 -0.25 -0.22 -0.00 -0.05 -0.03 -3.01 517.18 

Note: c is the constant term of the model; AIC is used in the model selection rather than the 

determination coefficient R2. Although a model with more parameters should correspond to a 

larger R2, too many parameters may also result in overfitting, thus the generalization of the 

model would decrease. AIC is used for model selection here as it has two components: 

likelihood term and penalty term which counterbalance with each other. Physically, minimizing 

AIC would balance the model complexity and the generalization of the model. For example, 
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introducing more less relevant variables may bring a small improvement of the likelihood term 

(model performance) but also a large penalty term to make the model clear and simple. 

The best robust regression model for the sand data is the three-parameter model M6 with 

AIC = 433.00 (Table 7): 

ln �𝑆𝑆
𝐷𝐷
� = 0.50 ln(𝐾𝐾𝐾𝐾) + 1.95 𝑒𝑒

𝐷𝐷
− 0.07 ln(𝑑𝑑50)− 2.43 + 0.26𝜖𝜖, (34) 

Eq. (34) is much more concise than Eq. (33), the reason is that Eq. 33 was derived before 

handling the outliers. Ignoring the residual term and taking the power function with e as the 

base on both sides of the equation at the same time, Eq. (34) is back-transformed to: 

𝑆𝑆
𝐷𝐷

= 0.09 ∙ √𝐾𝐾𝐾𝐾 ∙ 0.14−
𝑒𝑒
𝐷𝐷 ∙ 𝑑𝑑50

−0.07, (e/D＞-0.5), (35) 

According to the clear relationship in Eq. (35), the form of our model is generally similar 

to that of SF1990, but e/D is further incorporated which shows a negative effect on the scour 

process. The grain size also slightly influences the scouring of sands beneath pipelines. 

5.3 Model training with both the sand and silt data 

As no specific model is available for predicting the scouring of silts, the optimal model 

for sands, namely, Eq. (35) was tested for predicting the S/D of silts with our experimental data. 

The results are shown together with the difference between the prediction and observation in 

Table 8. The difference can not be ignored, the root mean square error (RMSE) is 0.21 and 

mean absolute error (MAE) is 0.19, thus the predictions are not satisfactory.  

Table 8. Test results of the performance of Eq. (35) for predicting the silt data. 

Exp. No. for 

silts 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Observed 

S/D 

0.54 0.40 0.75 0.33 0.66 0.52 0.26 0.01 0.10 0.30 0.18 0.60 0.34 

Predicted 

S/D 

0.40 0.15 0.44 0.17 0.47 0.41 0.16 0.21 0.31 0.46 0.08 0.17 0.49 

Difference 
0.14 0.25 0.31 0.16 0.19 0.11 0.1 -0.2 

-

0.21 

-

0.16 
0.1 0.43 

-

0.15 

Given that silt data are rare at the present stage, it is impossible to build a data-driven 

model for silts specifically. An alternative is the attempt to build a joint model for sands and 
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silts. Therefore, the whole dataset in the present work (sands+silts) was employed to establish 

a more generalized model for S/D. Similar modelling processes were performed again with 

adaptive robust regression but with the sand+silt dataset for all the permutations and 

combinations of the parameters as done in Section 5.2. In this round, the optimal model with 

AIC = 469.99 is found as: 

ln �𝑆𝑆
𝐷𝐷
� = 0.59 ln(𝐾𝐾𝐾𝐾) + 1.30 𝑒𝑒

𝐷𝐷
− 0.17 ln(𝑈𝑈m) − 0.10 ln(𝑇𝑇w) − 0.08 ln(𝑑𝑑50) + 0.15√𝜃𝜃 + 0.27𝜖𝜖, (36) 

This model is rather complex for practical application, therefore, further examinations 

were performed by introducing a dummy variable η to distinguish the type of sediment. With 

η included in the modelling, the estimates of each model and corresponding AIC value are 

reported in Table 9. 

Table 9. Coefficient estimates from adaptive robust regression for sands and silts with the 

dummy variable included. 

Model 

No. 
𝝈𝝈 𝝉𝝉 

ln 

KC 
e/D 

ln 

Um 

ln 

Tw 
D-1 

ln 

d50 
𝜽𝜽0.5 η c AIC 

One-parameter Model 

M1D 0.34 1.3 0.54 - - - - - - 0.18 
-

2.57 
391.92 

Two-parameter Model 

M2D 0.24 0.1 0.51 1.43 - - - - - 
0.47 -

2.41 
1124.524 

Three-parameter Model 

M3D 0.23 0.1 0.58 1.25 -0.14 - - - - 
0.48 -

2.77 
1127.32 

M4D 0.24 0.1 0.53 1.45 - 
-

0.04 
- - - 

0.47 -

2.42 
1126.17 

M5D 0.23 0.4 0.49 1.35 - - 0.00 - - 
0.48 -

2.43 
731.912 

M6D 0.25 1.0 0.51 1.46 - - - -0.05 - 
0.38 -

2.45 
514.64 
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M7D 0.23 0.3 0.55 1.34 - - - - 
-

0.22 

0.55 -

2.44 
799.94 

Four-parameter Model 

M8D 0.22 0.3 0.61 1.30 -0.17 
-

0.08 
- - - 

0.47 -

2.81 
804.74 

M9D 0.22 0.1 0.56 1.26 -0.12 - 0.00 - - 
0.48 -

2.70 
1130.07 

M10D 0.23 0.8 0.57 1.27 -0.13 - - -0.02 - 
0.44 -

2.74 
578.32 

M11D 0.22 0.1 0.58 1.24 -0.11 - - - 
-

0.14 

0.53 -

2.69 
1129.22 

M12D 0.23 0.4 0.49 1.35 - 
-

0.04 

-

0.00 
- - 

0.48 -

2.43 
733.69 

M13D 0.26 1.0 0.53 1.53 - 
-

0.06 
- -0.06 - 

0.36 -

2.45 
505.87 

M14D 0.24 0.3 0.57 1.37 - 
-

0.06 
- - 

-

0.22 

0.54 -

2.44 
792.87 

M15D 0.23 0.6 0.49 1.36 - - 0.00 -0.02 - 
0.44 -

2.43 
644.19 

M16D 0.22 0.4 0.51 1.33 - - 0.00 - -0.11 
0.51 -

2.42 
675.28 

M17D 0.23 0.7 0.54 1.38 - - - -0.03 
-

0.16 

0.47 -

2.43 
477.18 

Five-parameter Model 

M18D 0.23 0.4 0.74 1.29 -0.31 
-

0.18 

-

0.00 
- - 

 -

3.16 
728.63 

M19D 0.24 0.8 0.60 1.34 -0.15 
-

0.08 
- -0.02 - 

 -

2.80 
569.46 

M20D 0.22 0.1 0.61 1.29 -0.14 - - - 0.10  - 1131.97 
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0.09 2.73 

M21D 0.23 0.6 0.55 1.26 -0.11 - 0.00 -0.00 - 
 -

2.69 
648.96 

M22D 0.22 0.1 0.57 1.25 -0.10 - 0.00 - 
-

0.12 

 -

2.65 
1131.30 

M23D 0.23 0.8 0.57 1.27 -0.12 - - -0.02 
-

0.01 

 -

2.73 
580.89 

M24D 0.25 0.9 0.49 1.42 - 
-

0.01 
0.00 -0.04 - 

 -

2.45 
540.48 

M25D 0.23 0.4 0.53 1.34 - 
-

0.02 
0.00 - 0.12 

0.52 -

2.44 
730.02 

M26D 0.24 0.1 0.58 1.39 - 
-

0.05 
- -0.01 

-

0.26 

0.54 -

2.46 
1129.87 

M27D 0.23 0.6 0.51 1.35 - - 0.00 -0.02 
-

0.08 

0.47 -

2.45 
641.22 

Six-parameter Model 

M28D 0.24 0.7 0.73 1.31 -0.30 
-

0.18 

-

0.00 
-0.01 - 

0.43 -

3.13 
602.82 

M29D 0.23 0.4 0.75 1.28 -0.29 
-

0.18 

-

0.00 
- 0.10 

0.50 -

3.12 
730.12 

M30D 0.24 0.8 0.60 1.34 -0.15 
-

0.08 
- -0.02 0.00 

0.42 -

2.80 
571.36 

M31D 0.24 0.8 0.55 1.29 -0.10 - 0.00 -0.02 0.00 
0.43 -

2.69 
578.14 

M32D 0.23 0.1 0.55 1.38 - 
-

0.05 
0.00 -0.01 

-

0.18 

0.51 -

2.43 
1131.84 

Seven-parameter Model 

M33D 0.23 0.7 0.74 1.32 -0.29 
-

0.18 

-

0.00 
-0.01 

-

0.04 

0.44 -

3.12 
608.74 
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Note: c is the constant term of the model. 

According to the smallest AIC value (391.92) shown in Table 9, the best model for S/D is 

very elegant with only two parameters, ln KC and η, and the formulation can be given as: 

ln �𝑆𝑆
𝐷𝐷
� = 0.54 ln(𝐾𝐾𝐾𝐾) + 0.18 𝜂𝜂 − 2.57− 0.34𝜖𝜖, (37) 

where η=1 for silts and η=0 for sands. The AIC value of Eq. (37) is 391.92, which is much 

smaller than that of Eq. (36) (AIC=469.99) before incorporating the dummy variable. Ignoring 

the residual item, and taking the power function with e as the base on both sides of the equation 

at the same time, the optimal S/D model for sands and silts is back-transformed to: 

where α is an empirical coefficient; here, α=1.2 for the silts from the Yellow River Delta. 

Again, the model was found to have a similar shape to that of SF1990, but the influence of 

sediment type was successfully detected. Under the same KC number, the equilibrium scour 

depth over silts is generally 1.2 times that of sands for the Yellow River silts. The influence of 

sediment type is even bigger than that of e/D in Eq. (38). However, this does not mean that the 

influence of e/D is always weaker than sediment types, as only cases with e/D＞-0.5 are 

involved in the present work. Future works will be extended to deeper burial (e/D＜-0.5) and 

suspended (e/D＞0) scenarios. 

6. Validation 

The optimal models proposed in this paper are tested and validated in this section. 

6.1 Test of the proposed sand model for predicting sands 

The first validation was performed for sands. To this end, 30 sets of sand test data (cf. 

Appendix) from Mousavi et al. (2009) and Pu et al. (2011), which were not used in the model 

training in Section 5, were used to test the performance of the proposed sand model (Eq. 35). 

Comparisons were conducted with the three process-based models of Sumer and Fredsøe 

(1990), Cevik and Yuksel (1999), Sumer and Fredsøe (2002) and the two data-driven models 

of Etemad-Shahidi et al. (2011) and Sharafafi et al. (2018), which have been given in the 

Introduction section and here abbreviated as SF1990, CY1999, SF2002 and ES2011, Sh2018, 

respectively. The models of Mousavi et al. (2006) and Pu et al. (2011) were not used as 

𝑆𝑆
𝐷𝐷

= 0.08 ∙ α𝜂𝜂 ∙ 𝐾𝐾𝐾𝐾0.54, (e/D＞-0.5), (38) 

http://dict.youdao.com/w/empirical%20coefficient/#keyfrom=E2Ctranslation
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comparison models because the Mousavi et al. (2006) model is valid only for KC < 6, and the 

complete form of the Pu et al. (2011) model is not available, as mentioned in the Introduction. 

Therefore, the sand data from Mousavi et al. (2006) and Pu et al. (2011) were used as the test 

set of sands. The test results are shown in Figure 5. Note that the data for suspended (e/D＞0) 

pipelines in Pu et al. (2011) were not used here, as the present study concerns only cases in 

which e/D ≤ 0 (in-contact or buried pipelines). 

 
Figure 5. Comparisons of S/D modelling for the test set of sands (sand data collected from 

Mousavi et al. (2009) and Pu et al. (2001)). Note that Eq. (35) is our proposed best model for 

sands. Eq. (38) (with the dummy variable 𝜂𝜂 incorporated) is the best model that we proposed 

for both sands and silts. Here, 𝜂𝜂=0 because it is the validation for sands. SF1990, CY1999, 

SF2002, ES2011 and Sh2018 refer to the three process-based models of Sumer and Fredsøe 

(1990), Cevik and Yuksel (1999), Sumer and Fredsøe (2002) and two data-driven models of 

Etemad-Shahidi et al. (2011) and Sharafafi et al. (2018), respectively. 

It can be seen from Figure 5 that Eq. (35) and Eq. (38) are the best two among all seven 

models. The RMSE of the proposed sand model (Eq. 35) is 0.0989, while the RMSE of the 
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proposed sand/silt model (Eq. 38) is 0.0877, both are smaller than the others. The validation 

results demonstrate that our proposed models are more effective in predicting scouring in sandy 

seabeds. 

6.2 Test of the proposed generalized model for predicting silts 

Secondly, further validation was performed for the silts. As silt data are only available 

from our experiments, the 13 sets of silt data were used as the test set. Comparisons were also 

made to the five models above, and the results are shown in Figure 6. 

 

Figure 6. Comparisons of S/D modelling for the test set of silts (our experimental data). Note 

that the proposed Eq. (38) (with the dummy variable 𝜂𝜂 incorporated) is the best model for the 

prediction of scouring in both sands and silts; here, 𝜂𝜂=1, as it is the validation for silts. Eq. (35) 

is the proposed best model for predicting the scouring of sands, but it is nevertheless presented 

here for comparison. SF1990, CY1999, SF2002 and ES2011, Sh2018 refer to the three process-

based models of Sumer and Fredsøe (1990), Cevik and Yuksel (1999), Sumer and Fredsøe 

(2002) and two data-driven models of Etemad-Shahidi et al. (2011) and Sharafafi et al. (2018), 
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respectively. 

Figure 6 shows that although SF1990 is the best process-based model with an RMSE of 

0.1665, the proposed Eq. (38) gives the best prediction (with the smallest RMSE of 0.1596) 

among all seven models. This result demonstrates that the newly-proposed model for both 

sands and silts (Eq. 38) is the most effective model for predicting scour in silty seabeds. The 

reason for this better performance is that Eq. (38) distinguishes the sediment type with the 

dummy variable 𝜂𝜂. This implicitly indicates a different scour process between sands and silts 

from the data-driven perspective. 

6.3 Test of the proposed generalized model for predicting both sands and silts 

 
Figure 7. Comparisons of S/D modelling for the combined test set of silts and sands. Note that 

Eq. (38) (with the dummy variable 𝜂𝜂 incorporated) is the best model that we proposed for 

predicting the scouring of both sands and silts. Eq. (35) is the best model that we proposed for 

predicting the scouring of sands only. SF1990, CY1999, SF2002, ES2011 and Sh 2018 refer to 

the three process-based models of Sumer and Fredsøe (1990), Cevik and Yuksel (1999), Sumer 
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and Fredsøe (2002) and two data-driven models of Etemad-Shahidi et al. (2011) and Sharafafi 

et al. (2018), respectively. 

When the test sets of sands (17 sets) and silts (13 sets) are combined and used for model 

validation, Eq. (38) still shows the best performance, with the smallest RMSE of 0.1241 

(Figure 7). 

7. Conclusions 

The scour depth beneath submarine pipelines is very important for ocean engineering. 

However, few quantitative models have been established for silty seabeds compared to 

noncohesive sands. In this study, firstly, laboratory experiments were conducted for both silty 

and sandy seabeds; secondly, data from the literature were collected and combined with our 

experimental data to form a 204-set dataset, which is the most abundant dataset to date on this 

topic. Based on this dataset, two statistical learning models were established for sands only and 

sands and silts together for predicting the equilibrium scour depth beneath pipelines under 

waves. Detailed conclusions derived from the present work are given as follows: 

1. Adaptive robust regression is effective in handling the outliers in the dataset, thereby 

improving the prediction accuracy for the equilibrium scour depth under pipelines. The 

proposed models not only outperform three commonly-employed process-based models and 

two data-driven models in accuracy but also show good interpretation in physics. 

2. A simple formula for predicting the S/D beneath pipelines under waves in sandy 

seabeds is suggested: 

𝑆𝑆
𝐷𝐷

= 0.09 ∙ √𝐾𝐾𝐾𝐾 ∙ 0.14−
𝑒𝑒
𝐷𝐷 ∙ 𝑑𝑑50

−0.07, (e/D＞-0.5), 

indicating that the scour in sands is mostly related to the KC number and initial pipeline-seabed 

gap (e/D) but is also weakly related to the grain size of sediments (d50). Note that here e/D is 

negative when the pipeline is buried, not the absolute value. 

3. A generalized model for predicting the S/D beneath pipelines under waves in both sandy 

and silty seabeds is suggested: 

𝑆𝑆
𝐷𝐷

= 0.08 ∙ α𝜂𝜂 ∙ 𝐾𝐾𝐾𝐾0.54, (e/D＞-0.5), 

with a dummy variable (𝜂𝜂 ) incorporated to distinguish sands from silts. α  is an empirical 

http://dict.youdao.com/w/empirical%20coefficient/#keyfrom=E2Ctranslation
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coefficient, where α =1.2 for the silts from the Yellow River Delta in China. This model 

indicates that the scour beneath pipelines is mostly related to the KC number and sediment type. 

With the same KC number, the equilibrium scour depth in silts is generally 1.2 times that in 

sands for Yellow River silts. 

The present work not only provides more experimental data but also contributes two 

practical formulas to the pipeline scour community. However, the models proposed in the 

present paper are limited to e/D＞-0.5, and future works may extend to e/D＜-0.5 or suspended 

scenarios (e/D＞0). 
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Notation 

D pipe diameter 

d50 median grain size 

h water depth 

e [italic] clearance between the pipe and undisturbed bed 

e the base of the natural logarithm 

KC Keulegan-Carpenter number 

θ Shields parameter 

θcr Critical θ for the initiation of the motion of bed-material particles 

Ur Ursell parameter 

S equilibrium scour depth 

http://dict.youdao.com/w/empirical%20coefficient/#keyfrom=E2Ctranslation


 

 3  

Hw wave height 

Tw wave period 

L wavelength 

g acceleration due to gravity 

ρ density of water 

ρs density of sediment particles 

Um maximum water particle velocity on the bed in the absence of the pipe 

U* friction velocity 

𝜏𝜏w wave shear stress 

𝑓𝑓w wave friction factor 

A semi-excursion of wave particles at the bottom 

𝑑𝑑∗ dimensionless diameter of the sands 

ν kinematic viscosity 

𝜂𝜂 dummy variable 

c constant term of the model 

m constant related to bed materials in Pu et al. (2001) 

B function of e/D in Pu et al. (2001) 

α empirical coefficient for the proposed model 

k =2π/L is the wavenumber 

xi independent variable 

yi dependent variable 

R real number field 

n sample amount of the investigated data set 

d dimension of xi 

𝜖𝜖 residual 

𝜇𝜇 noise  

σ scale parameter 

β coefficient of the regressor 

�̂�𝛽 estimation of β 

http://dict.youdao.com/w/empirical%20coefficient/#keyfrom=E2Ctranslation


 

 3  

τ hyper-parameter 

�̂�𝜏∗ estimated data-dependent tuning optimal hyper-parameter   

𝜎𝜎� estimated scale parameter 

�̂�𝑒𝑖𝑖 (yi−𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽)/𝜎𝜎� 

Q maximum likelihood function value 

K number of independently adjusted parameters 

I(·) indicator function 

Φ(·) cumulative probability function of the standardized normal distribution 

ρ(·) dispersion function 

𝛹𝛹(𝜖𝜖) gradient of ρ(𝜖𝜖) 

T transpose of matrix 
 

Appendix A: Figure A1 

 

Figure A1. General flow of the present study. 
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Appendix B: Collected data from the literature 

The dataset is attached as an Excel file. 
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