
Human amygdala volume is predicted by common
DNA variation in the stathmin and serotonin
transporter genes
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Despite the relevance of changes in amygdala volume to psychiatric illnesses and its heritability in both health and disease,
the influence of common genetic variation on amygdala morphology remains largely unexplored. In the present study,
we investigated the influence of a number of novel genetic variants on amygdala volume in 139 neurologically healthy individuals
of European descent. Amygdala volume was significantly associated with allelic variation in the stathmin (STMN1) and serotonin
transporter (SLC6A4) genes, which have been linked to healthy and disordered affective processing. These results were
replicated across both manual and automated methods of amygdala parcellation, although manual tracing showed stronger
effects, providing a cautionary note to studies relying on automated parcellation methods. Future studies will need to determine
whether amygdala volume mediates the impact of stathmin and serotonin transporter gene variants on normal and dysfunctional
emotion processing.
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Introduction

The amygdala is central to many aspects of emotional and
cognitive processing1 and is arguably the brain region
most consistently implicated in neurodevelopmental and
neuropsychiatric disorders.2 Human research has consis-
tently demonstrated the importance of the amygdala to
emotion processing3 and cognition (for example, in memory
formation4,5). There is consistent evidence that damage to
the amygdala results in disruption to emotional cognitive
processing in humans, including the recognition and experi-
ence of emotions such as fear.6–8

Converging lines of evidence suggest that the amygdala is
structurally and functionally altered in psychiatric disorders.
Individuals with spider9 and social10 phobia show increased
amygdala responding to presentations of feared stimuli,
whereas individuals with depression show reduced amygdala
responding in response to sad stimuli.11 Amygdala activation
to emotional faces has also been shown to predict symptom
reduction in major depressive disorder.12 Further to this,
alterations in amygdala volume have been associated with a
number of disorders, including unmedicated depression,13

obsessive-compulsive disorder14 and autism, where amyg-
dala volume is significantly reduced in both individuals with
autism and their unaffected siblings.15

Although large-scale twin studies have shown that amyg-
dala volume is highly heritable,16,17 its molecular genetic
architecture remains to be determined. Here, we examined
the influence of common DNA variation in a sample of neuro-
logically healthy adults, emphasizing genes that are highly
expressed in the human amygdala, focusing on those

encoding the serotonin transporter, oxytocin receptor and
stathmin protein. Within the gene encoding the serotonin
transporter (SLC6A4), we investigated three variants: the
insertion/deletion polymorphism within the serotonin trans-
porter gene-linked promoter region (5-HTTLPR), a single-
nucleotide polymorphism (SNP) within 5-HTTLPR (rs22531)
and a variable number tandem repeat within the second intron
of this gene (STin2). Within the oxytocin receptor (OXTR) and
stathmin 1 (STMN1) genes, we focused our search on two
previously studied SNPs (rs53576 and rs182455, respectively).

The 5-HTTLPR consists of a long (l) and a short (s) allele,
with the s allele showing a 43-bp reduction (initially described
as a 44-bp reduction)18,19 in length to that of the l allele, and
reduced mRNA transcription levels,20 which may in turn lead
to reduced efficiency of the serotonin transporter. The
presence of at least one s allele has been repeatedly
associated with increased amygdala function at rest21 and in
response to emotional stimuli.22 This association between
amygdala hyperactivity in s allele carriers has been confirmed
by two meta-analyses.23,24 In addition, Scherk et al.25 found
that right amygdala volume was significantly larger in those
carrying at least one s allele. We also examined rs25531, a
SNP that is thought to alter the function of the 5-HTTLPR
variants.26 The presence of a G (but not an A) nucleotide is
thought to alter and reduce the transcriptional efficacy of the l
allele to function more similarly to that of an s allele,18,26,27

although inconsistencies have been reported.28,29 As s allele
carriers show altered amygdala morphometry, the presence
of a G nucleotide within rs25531 may also be associated with
changes in amygdala volume.
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STin2, a 16–17 bp variable number tandem repeat poly-
morphism, presents with two major alleles corresponding to
10- and 12-repeat units, and has been found to be in linkage
disequilibrium with the 5-HTTLPR polymorphism in different
populations.30–32 The 12-repeat allele has been reported to be
a transcriptional enhancer,33 showing reduced luciferase
expression in embryonic and murine stem cells.34,35 Para-
doxically, Bah et al.36 found that 12-repeat homozygotes
displayed lower serotonin transporter availability in the brain,
despite the aforementioned evidence of increased tran-
scription. DNA variation in STin2 has been associated
with a number of affective disorders,37,38 and recent
evidence suggests a combinatorial interaction between
5-HTTLPR and STin2.39,40 Given these associations, it
remains to be tested if STin2 variation is associated with
amygdala volume.

The oxytocin peptide has been shown to be important in
regulating social behavior, with oxytocin demonstrated to
have a role in the effects of social stress, emotion recognition
and social memory.41 Because of this, and the high density of
oxytocin receptors within the amygdala,42 we investigated the
relationship between DNA variation in the oxytocin receptor
gene and amygdala volume. We focused on a SNP (rs53576)
within the oxytocin receptor gene, which has been associated
with prosocial temperament and the response of the
amygdala during facial emotion processing, as well as a
reported effect on amygdala volume in male participants.43

The search for the genetic basis of brain function has
predominantly focused on genetic variants implicated in
neural transmission. An alternative approach is the targeting
of genes that regulate neural plasticity. Stathmin, a regulator
of microtubule formation, is highly expressed in the amyg-
dala44–46 and is crucial for fear processing in mice.46

Shumyatsky et al.46 found that stathmin knock-out mice
exhibited deficient long-term potentiation in the amygdala,
and an inability to recognize danger in innately aversive
environments. Interestingly, these mice displayed similar
deficiencies in threat assessment to mice that had their
basolateral amygdala lesioned.45 Expanding this work to
humans, Brocke et al.47 investigated two purportedly func-
tional SNPs within the control region of the gene encoding for
stathmin. They reported an influence of a SNP within stathmin
(rs182455) on amygdala-mediated responding during an
emotionally modulated acoustic startle paradigm. Given
the strong role of stathmin in amygdala structure and
function in animals, it is possible that the effect of rs182455
on emotion processing in humans is mediated by amygdala
morphometry.

The aim of the present study was to investigate the
influence of the above common genetic variants on amygdala
volume, as determined using manual and automated (Free-
surfer) parcellation protocols. The use of automated software
packages to quantify amygdala volume is increasing with the
availability of large databases of high-resolution magnetic
resonance images (MRIs), and because of collaborative
efforts such as the ENIGMA consortium (http://enigma.loni.
ucla.edu/). Although direct comparisons between manual
tracing and automated segmentation protocols show high
overlap and significant positive correlation,48 it is unclear
whether manual and automated methods are equally

sensitive to the small effect sizes of genetic influences on
amygdala volume.

We hypothesized that amygdala volume would be
increased in s allele carriers of the 5-HTTLPR polymorphism
based upon previous findings of increased risk for mental
illness and increased amygdala function and volume in s allele
carriers. We predicted that amygdala volume would vary as a
function of allelic variation in rs53576 of the oxytocin receptor
gene. As the 10-repeat allele of STin2 has been linked to a
number of mental illnesses, we predicted the presence of the
10-repeat allele would be associated with reduced amygdala
volume. Similarly, we predicted that the presence of a C allele
of stathmin rs182455, which has been related to a reduction
in cognitive-affective processing,49 would be associated
with reduced amygdala volume.

Materials and methods

Participants. One hundred and thirty-nine right-handed
participants (seventy-two male, mean age 22 years, range
18–40 years) were recruited from the University of Queens-
land. All participants were of European ancestry to avoid any
possible population stratification artifacts. Participants were
all right-handed and were screened for any lifetime history
of head trauma, neurological or psychiatric disorders, and
active or recent use of psychoactive medications or drugs.
Thirteen participants failed genotyping for at least one gene
and were removed from subsequent analyses. Written
informed consent was obtained from all participants
before study participation. The study was approved by the
Medical Research Ethics Committee of the University of
Queensland.

MRI acquisition and volume measurement protocols.
High-resolution T1-weighted structural MPRAGE images
were collected at a voxel resolution of 0.9 mm isotropic on
a 1.5-T Siemens (Siemens Medical Solutions, Erlangen,
Germany) Sonata (N¼ 82) and a 3-T Siemens TRIO
(N¼ 57). Image preprocessing was conducted using the
FMRIB Software Library.50 Images were stripped of
extra-cerebral tissues using the Brain Extraction Tool,51

and then reoriented in space to align with the MNI ICBM152
template using FMRIB’s Linear Image Registration Tool.52

The resulting realignment matrix was then applied to
the original MPRAGE images, which were then imported
into the ANALYZE 10 software package (Mayo Clinic,
Rochester, MN, USA) for manual tracing.

Amygdalae were manually traced by the same investigator
(DS) who was blind to genotype, based on a previously
validated protocol,53 with slight modifications defining the
boundary between the amygdala and the hippocampus.54

Intra-class correlation coefficients (absolute agreement) for
right and left amygdalae were 0.94 and 0.94, respectively, for
intra-rater reliability; and 0.97 and 0.91 for inter-rater reliability
against an experienced amygdala tracer (VL) and based on
10 randomly selected images.

Manual tracing of the amygdala boundaries was performed
on coronally displayed MRI slices and proceeded in a caudal
to rostral direction. Amygdala boundaries were defined based
upon neighboring gray- and white-matter structures such as
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the hippocampus. Appearing initially as gray matter above the
temporal horn, the amygdala was bounded by a thin strip of
white matter at its superior-lateral edge, separating it from the
claustrum and the tail of the caudate; the angular bundle
and entorhinal cortex bounded the amygdala medially; the
semilunar gyrus defined the superior-medial boundary;
and the hippocampus and the temporal white matter defined
the inferior and inferior-lateral boundaries, respectively.
The anterior boundary of the amygdala, which can be difficult
to observe in MRI images, was defined as either the slice
posterior to the appearance of the optic chiasm, or where the
lateral sulcus closes to form the entorhinal sulcus, whichever
was more posterior. Volumetric estimates were obtained by
summing all voxels within the left and right amygdalae within
all traced slices.

To contrast against the results from the manual tracing
protocol, we also computed amygdala volumes with the
fully automated subcortical segmentation component of
Freesurfer’s (http://surfer.nmr.mgh.harvard.edu/) cortical
reconstruction process, which has been shown to be more
highly correlated with hand tracing than other automated
protocols.48 This also provided a measure of intracranial
volume, which was used as a covariate in all analyses,
because of the influence of intracranial volume on amygdala
volumetric measurements.55

Genotyping. DNA was isolated from 2 ml saliva collected
using Oragene self-collection kits (DNA Genotek, Kanata,
Ontario, Canada). Primers for PCR amplification were
designed using Primer3,56 and are contained in Table 1.
DNA was amplified using standardized procedures: PCR for
rs22531 and STin2, and touchdown PCR for 5-HTTLPR and
rs53576. PCR product was digested using BamHI and MspII
enzymes (New England Biolabs, Ipswich, MA, USA) to cut
the rs53576 and rs22531 PCR products, respectively.
Following electrophoresis in 3% agarose gel, the PCR and
digestion products were visualized using 5 ml of SYBR safe
gel stain (Invitrogen, Carlsbad, CA, USA) or ethidium bromide
where SYBR safe stain failed to visualize bands. We utilized an
automated DNA fragment QIAxcel system (QIAGEN, Hilden,
Germany) to confirm gel electrophoresis. The rs182455
SNP was genotyped using an Applied Biosystems (Foster
City, CA, USA) Taqmans assay running on a Lightcycler

480 (Roche, Rotkreuz, Switzerland), following manufac-
turer’s instructions.

An additive model was used to categorize genotypes for all
analyses involving the 5-HTTLPR polymorphism, rs182455
and rs53576. As the s allele of the 5-HTTLPR polymorphism
has been associated with risk for mental illness and altered
amygdala activation, genotype was coded to reflect these
associations such that ll, ls and ss were coded as 0, 1 and 2,
respectively. Cases where an l allele for 5-HTTLPR
co-occurred with a G SNP for rs25531 were recoded as s
alleles. For STin2, we employed a 10-repeat dominant model
as used by Sarosi et al.,57 coding 10/10 and 10/12 genotypes
as 1 and 12/12 as 2. Rare genotypes, 9/9 and 9/10, were
excluded from analysis as they represented less than one
percent of all cases. We used an additive model to classify
rs182455, coding for the major allele, such that TT, CT and
CC were coded as 0, 1 and 2, respectively. For rs53576, we
combined the less common A/A and A/G genotypes for our
comparison against G/G, as has been done previously by
others.58,59

Results

A detailed description of brain volumetric measurements is
provided in Table 2. The mean values for the manual tracing
data are consistent with amygdala volumes measured in post-
mortem brains.60–63 Average automated values are in line
with previous reports, which also note larger volume values
resulting from automated parcellation methods.48 Amygdala
volumes obtained from manual and automated parcellation
were significantly correlated, r(137)¼ 0.543, Po0.001, as
shown in Figure 1. Figure 2 presents a Bland–Altman plot64,65

illustrating the agreement between manual and automated
parcellation volumes.

The relationship between genotype and amygdala volume
was measured by performing linear regressions, separately
for the type of parcellation method (that is, manual and
automated), with results detailed in Table 3. Kolmogorov–
Smirnoff tests were used to assess the assumption of central
tendency and confirmed that all dependent measures were
significantly normal, all D(136) o0.08, P40.10. Regression
analyses were run in two steps: first, we controlled for the
impact of major confounders on amygdala volumes, including

Table 1 Genotyping methods and frequencies

Gene Variant Alleles Digest Product/digest length Primers (50-30) Genotype frequencies (N)

SLC6A4 5-HTTLPR Short (s) � 486 bp F: GGC GTT GCC GCT CTG AAT GC SS (35)
Long (l) 529 bp R: GAG GGA CTG AGC TGG ACA ACC AC SL (54)

LL (43)
rs25531 A MspI 174þ168þ 125þ 62 bp � AA (111)

G 342 þ 125þ 62 bp AG (14)
GG (1)

STin2 10 Repeat � 279 bp F: CAG AAT GGA GGG GGT CAG TA 10/10 (26)
12 Repeat 312 bp R: TGT TCC TAG TCT TAC GCC AGT G 10/12 (60)

12/12 (43)
OXTR rs53576 C BamHI 238 bp F: GCC TGG TTT GAA CTG TTT CC CC (78)

T 168þ 70 bp R: ATT CAC TCT GGG CCA TGA AG CT (46)
TT (5)

STMN1 rs182455 C � � CC (43)
T CT (60)

TT (26)

All frequencies are within Hardy-Weinberg equilibrium, P40.05.
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MRI field strength,66,67 sex68,69 and total intracranial
volume.70 We then added in the effect of genes of interest
into the regression model. Both covariates and genes of

interest were entered using the forced entry method, which
makes no assumption as to the order of entry into the
regression, and allowed the five genetic variants to be
tested together. This method is advantageous when there is
no strong theoretical basis for a specific order of entry, and is
able to test all genetic variants together.71

The regression models at steps 1 and 2 were significant for
volumes obtained from both of our parcellation methods
(see Table 3). First, we found a significant influence
of confounding variables on amygdala volumes. Although
only intracranial volume predicted amygdala volumes
obtained with manual tracing, amygdala volumes resulting
from the automated protocol were significantly affected by
intracranial volume and MRI magnet field strength, indicating
a difference between the two parcellation methods.

When we examined the impact of genes of interest on
amygdala volumes, we found that the stathmin rs182455 and
the serotonin transporter STin2 variants were significantly
associated with amygdala volumes obtained from manual
tracing, whereas this effect was weaker on amygdala volumes
resulting from utilizing the automated protocol.

Discussion

To our knowledge, this is the first study to explore the
association between amygdala volume and key novel genetic
variants implicated in normative emotional functioning as well
as a range of common neuropsychiatric disorders. Further-
more, we compared the sensitivity of manual and automated
(that is, Freesurfer) methods of amygdala parcellation
in detecting genetic effects on amygdala volume. Our
findings indicate that variation in stathmin rs182455 and,
to a lesser extent, in serotonin transporter STin2 poly-
morphism is associated with individual differences in amyg-
dala volumes measured with both manual and automated
methods. Notably this association was stronger for the
manually traced compared with the automatically segmented
amygdala volumes.

The observed association between the number of C alleles
and amygdala volume provides the first evidence of an
influence of rs182455 on amygdala volume in healthy
humans. Amygdala volumes were reduced in participants
with an increasing dose of the stathmin rs182455 C allele, and
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Figure 1 Correlation between amygdala volumes obtain via manual and
automated parcellation methods.

Table 2 Amygdala volume, in cubic millimeters, as a function of genotype and parcellation method (mean±s.d. mm3)

Parcellation method

Gene Polymorphism Genotype Manual (mm3) Freesurfer (mm3)

SLC6A4 5-HTTLPR Short/short 1231.71±179.64 1669.54±201.82
Short/long 1200.66±148.31 1657.72±222.88
Long/long 1258.04±148.57 1775.08±246.39

STin2 12/12 1184.92±137.84 1661.24±201.42
10/12 1247.87±181.61 1718.85±224.44
10/10 1257.00±126.61 1753.58±223.15

OXTR rs53576 CC 1230.18±166.13 1701.59±214.84
CTþTT 1202.01±153.47 1689.25±228.64

STMN1 rs182455 CC 1180.14±151.57 1701.41±230.50
CT 1214.55±154.43 1651.81±196.15
TT 1304.43±172.00 1796.21±227.10
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Figure 2 Bland–Altman plot of amygdala volumes obtained by performing the
manual and automated parcellation methods. This plot displays the difference
between manual and automated volume values against the mean of the two values
for each participant, thereby providing a measure of agreement between the two
methods. The solid line represents the mean difference between the two methods.
Dashed lines represent the limits of agreement, which are defined as 1.96 standard
deviations above and below the mean differences.

Genetic variation and amygdala volume
D Stjepanović et al
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this result was confirmed by both manual and automated
methods of amygdala parcellation. This finding is particularly
interesting given the wide distribution of stathmin within the
brain, and the amygdala in particular, and its function as a
major signaling protein.44,72,73 The wide distribution and role
of stathmin suggests that there may exist other brain regions
wherein morphometric or functional changes are present as a
result of genetic variation in the stathmin gene. Specific to the
amygdala, stathmin knock-out mice have been previously
reported to display deficiencies in threat assessment that
mimicked mice with lesions in the basolateral amygdala.45

This effect of stathmin upon amygdala structure is echoed
by the present findings of an association between the number
of C alleles and amygdala volume, and provides the first
evidence of an influence of rs182455 on amygdala volume in
healthy humans. An effect of rs182455 on amygdala volume
may, in turn, contribute to the previously reported genetic
effects on cognitive and affective control processes,49 and
startle response to affective stimuli.47 Future research may
benefit from the use of amygdala volume as a mediating
variable when investigating the relationship between stathmin
rs182455 variation and cognitive and affective processing.

In addition to effects of stathmin rs182455, we also
observed increased amygdala volume in the presence of the
10-repeat allele of STin2. This association, however, was only
significant for manually measured amygdala volumes. This is
an intriguing finding given the association of the 10-repeat
allele of this marker with a number of psychiatric dis-
orders,37,74–76 suggesting that alteration in amygdala volume
may provide a useful mediating variable between variation in
STin2 and risk for mental illness. Future research is necessary
to explore this potential relationship by directly testing the
ability of amygdala volume variation to mediate relationships
between STin2 variation and risk for or the presence of
disease.

Our findings do not confirm previous reports25,69 of an
association between amygdala volume and allelic variation in
the 5-HTTLPR polymorphism. This was despite the current

study having a relatively larger sample size and greater power
to detect any existing effects. Similarly, we did not detect any
effect of variation in the oxytocin receptor polymorphism
rs53576 on amygdala volume.

The use of both automated and manual parcellation
protocols allowed a direct comparison of the sensitivity of
these methods to detect small genetic effects. Results for
the automated parcellation method replicated those obtained
from the manual parcellation, with weaker effects for
rs182455 and no effect of STin2 for manual parcellation.
Similarly, there was a significant effect of the nuisance
variable of magnet field strength on our model for the
automated parcellation but not manual tracing method. These
results suggest that the application of automated protocols
such as Freesurfer enable the detection of subtle genetic
effects on brain structure, albeit with reduced sensitivity
compared with manual tracing. This finding is particularly
relevant given the increasing use of automated protocols and
provides a cautionary note to future studies, in particular
those seeking to combine data across multiple sites and
scanner environments in order to increase sample size for
genetic analyses.

The reported findings are noteworthy given that the
amygdala is central to many aspects of affective and
social processing and is consistently implicated in a range of
common neurodevelopmental and neuropsychiatric dis-
orders. Notably, our findings were partially replicated across
both manual and automated amygdala parcellation methods,
with manual tracing being more sensitive to the effect of the
examined genetic variations on amygdala volumes. The
present results provide insight into the potential mechanisms
by which variation in these genes may influence healthy
cognitive and affective functioning, and ultimately contribute
to risk for mental illness. This study was limited, however, in
the number of genes that were investigated. There remain
many DNA variants that could potentially associate with
measures of amygdala function and affective processing that
have not been explored.77–83 Future work should address this

Table 3 Hierarchical regression analysis evaluating genetic influences on amygdala volume as a function of parcellation method (manual vs automated- Freesurfer)

Amygdala parcellation method

Manual Automated Freesurfer

Measures R R2 DR2 F change b Cohen’s f2 R R2 DR2 F change b Cohen’s f2

Step 1 0.470 0.221 0.221 9.439*** 0.732 0.538 0.538 39.321***
Covariates

Sex � 0.101 0.008 � 0.148 0.030
Magnet 0.105 0.014 0.501*** 0.515
Intracranial volume 0.405*** 0.133 0.498*** 0.338

Step 2 0.591 0.349 0.129 3.760** 0.764 0.585 0.047 2.861*
Covariates

Sex � 0.116 0.011 � 0.169* 0.037
Magnet 0.059 0.004 0.484*** 0.466
Intracranial volume 0.398*** 0.125 0.491*** 0.314

Genetic predictors
5-HTTLPR 0.016 0.000 0.106 0.021
STin2 � 0.210* 0.009 � 0.106 0.002
rs25531 0.089 0.048 0.028 0.021
rs53576 � 0.103 0.013 0.028 0.001
rs182455 � 0.249** 0.071 � 0.139* 0.038

*Po0.05, **Po0.01, ***Po0.001.
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limitation, focusing in particular on genes that regulate neural
plasticity such as STMN1 and BDNF.83 A deeper under-
standing of the genetic influences on amygdala volume
variation in normative samples will be key to inform future
research investigating the association between amygdala
volume and risk of developing psychiatric disorders.
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