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Analytical solutions are practical tools in ocean engineering, but their derivation is often constrained by the20

complexities of the real world. This underscores the necessity for alternative approaches. In this study, the poten-21

tial of Physics-Informed Neural Networks (PINN) for solving the one-dimensional vertical suspended sediment22

mixing (settling-diffusion) equation which involves simplified and arbitrary vertical Ds profiles is explored. A23

new approach of temporal Normalized Physics-Informed Neural Networks (T-NPINN) which normalizes the time24

component is proposed, and it achieves a remarkable accuracy (Mean Square Error of 10−5 and Relative Error25

Loss of 10−4). T-NPINN also proves its ability to handle the challenges posed by long-duration spatiotempo-26

ral models, which is a formidable task for conventional PINN methods. Besides, the T-NPINN is free of the27

limitations of numerical methods, e.g., the susceptibility to inaccuracies stemming from the discretization and28

approximations intrinsic to their algorithms, particularly evident within intricate and dynamic oceanic environ-29

ments. The demonstrated accuracy and versatility of T-NPINN make it a compelling complement to numerical30

techniques, effectively bridging the gap between analytical and numerical approaches and enriching the toolkit31

available for oceanic research and engineering.32

I. INTRODUCTION33

Analytical solutions are practical tools in ocean engineering applications. Analytical solutions to the one-dimensional34

vertical (1DV) suspended sediment settling-diffusion equation are useful tools for modeling suspended sediment concen-35

tration profiles (SSC). In recent years, it has also been widely used to optimize key sediment transport parameters from36

measured SSC data1,2.37

Existing analytical solutions to the 1DV equation are derived under different assumptions of eddy diffusivity (Ds)38

profiles along the depth. For example, with constant vertical Ds and settling velocity ws profiles, the exponential model39

was given as3:40

C(z, t) =C(0, t)e−
wsz
Ds (1)

where C(z, t) is the suspended sediment concentration at anytime t and any elevation in the water column z, with z=041

representing the sea floor and positive z upwards. C(0, t) is the bottom reference concentration.42

With linear vertical Ds profile, the power-law model was given as,43

C(z, t) =C(0, t)

(

z

zr

)ws/ku∗max

(2)
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where k=0.4 is the von Karman constant. zr is the reference elevation at which C(0, t) is given. u∗max is the maximum shear44

friction velocity.45

With parabolic vertica Ds profile, the Rouse model4 was given as:46

C(z, t) =C(0, t)

[

zr/h(1− z/h)

z/h(1− zr/h)

]δTws/ku∗
(3)

where h is the water depth, δT = 0.7 is the Prandtl-Schmidt number5.47

Prandle 6 proposed an analytical solution for sediment concentration time series associated with each erosional event48

of magnitude M as follows:49

C(z, t) =
M

(4πDst)1/2

[

e
− (z+wst)2

4Dst + e
− (2h+wst−z)2

4Dst

]

(4)

where M is the magnitude of each erosional event, thus the observed SSC time series represents a time integration of all50

the preceding “events”.51

Based on the principle of the convolution of impulse response function and the pick-up rates, a new analytical solution52

to the 1DV governing equation with bottom flux boundary conditions is given by Zhang et al. 1 as follows:53

C(z, t) =
∫ t

−∞







e
− (z−ws[t−t′])2

4Ds[t−t′]
√

πDs [t − t ′]
+

ws

2Ds
erfc

(

z−ws [t − t ′]

2
√

Ds [t − t ′]

)






p
(

t ′
)

dt ′. (5)

physically this solution considers all the bottom input, i.e., pick-up rates p(t ′) in history (t − t ′) ago and integrates all their54

remaining effects at the present moment (t), and erfc is the error function.55

However, in many complex cases, analytical solutions are not available, so solving these Partial Differential Equa-56

tions (PDEs) numerically using approximation methods is necessary. Numerical methods such as finite element method57

(FEM)7–9, finite difference method (FDM)10–12 and finite volume method (FVM)13 have gained favorable achievement.58

However, numerical methods require discretization and approximations that may lead to inaccuracies, struggle to capture59

intricate details, long-term behavior, or rapidly changing conditions like oceanic systems. Besides, numerical methods rely60

on mesh discretization for a given interest domain. However, in engineering applications sometimes only local data is ex-61

pected rather than the entire domain14,15. Therefore, meshless methods that use a set of configuration points without grids62

have been developed16–18. Deep neural networks (DNN), an efficient mesh-free method without discretization for a given63

interest domain, have drawn more and more attention. Based on their extraordinary universal approximation capacity19,64

DNN can numerically solve the ordinary and partial differential equations as well as the inverse problems for complex65

geometrical domain and high-dimensional cases20–25. While these methods are easy to implement and straightforward,66

their accuracy may deteriorate or not converge for a few configuration points.67

With the rapid development of computer science and technology23,26, Physics-Informed Neural Networks (PINN) dating68

back to the early 1990s again attracted widespread attention of researchers and have made remarkable achievements for69

approximating the solution of PDEs by embracing the physical laws with neural networks27,28. This method skillfully70

incorporates the residual of governing equations and the discrepancy of boundary/initial constraints, then formulates a cost71

function that can be optimized easily via the automatic differentiation in DNN. This makes PINN particularly effective in72

scenarios where numerical methods encounter challenges posed by intricate geometries, sparse data, or evolving dynamics,73

underscoring its significance as an innovative and promising tool in ocean science. So far, PINN has been used in solving74

hydrodynamic equations29–32, but not yet in suspended sediment transport equations.75

In the present paper, the potential of PINN in solving the 1DV suspended sediment settling-diffusion equation with ar-76

bitrary vertical Ds profiles is explored. An improved Temporal Nomalized Physics-Informed Neural Networks (T-NPINN)77

is proposed and compared with analytical solutions, numerical methods as well as traditional PINN and modified PINNs78

with different normalization strategies. The great potential of T-NPINN in solving the 1DV suspended sediment settling-79

diffusion equation in complex conditions is demonstrated. T-NPINN has the potential to be an important complement80

to cases where analytical solutions are not available and numerical models are not applicable, or even a more practical81

approach compared to numerical models.82
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II. METHODOLOGY83

A. An new analytical solution for C(z, t) with depth constant Ds84

A new analytical solution for C(z, t) to the 1DV governing equation (Eq. (6)) driven by a step increase in bottom85

reference concentration C(0, t) is obtained in this section. This analytical solution, as an exact solution, is used to test86

the performance of PINN under the same conditions, as the first step of this article. This scenario describes the response87

of C(z, t) to a prescribed bottom concentration that appears instantly and is kept thereafter (Figure 1(a)). The physical88

significance of taking a constant vertical Ds is for the shallow water region where wind generates turbulence at the air-89

water interface and ocean flow generates turbulence at the water-seabed interface.90

1. Governing equation91

The 1DV sediment mixing governing equation is given as:92

∂C

∂ t
=

∂

∂ z

[

Ds(z)
∂C

∂ z

]

−ws

∂C

∂ z
(6)

where Ds is denoted as a function of z, because in the following examples, the assumption that Ds is a constant is released.93

Therefore, a universal expression is provided here. The eddy diffusivity tensor should stay inside the first derivative of94

the Laplacian term. Taking it out will change the effective settling velocity against the one measured33, though these95

corrections are typically small, and often neglected34. ws is a constant sedimentation flow or in general an incompressible96

one. But this method can be easily generalized to compressible flows, in case the velocity is brought in.97

2. Boundary and initial conditions98

The bottom boundary condition of solving the governing equation is the bottom concentration C(0, t) varies as a step99

function. The step function is the manifestation of the input quantity jumps from 0 to 1 in a very short period (Figure 1(a)).100

The step function and impulse function which is the derivative of the step function allow for a convenient description of101

typical input into a system. Correspondingly, the step response function and impulse response function are convenient102

descriptions for the output of the dynamic systems. Here, the step function bottom boundary condition physically means103

that the time series of the bottom concentration at the bed varies as a step function: C(0, t) = 0 for t <0; C(0, t) = 1 for104

t >0; and the initial condition is c(z, t) = 0 for everywhere.105

3. The analytical solution106

The analytical solution for C(z, t) driven by a step function bottom concentration input is just the step response function107

for a system governed by Eq. (6). In other terms, if the SSC at the bed varies as a step function and the suspended sediment108

concentrations in the overlying column are governed by Eq. (6), one finds the analytical solution for C(z, t) at any time and109

elevation is:110

C(z, t) =
C(0, t)

2

{

er f c(
z+wst

2
√

Dst
)+ e

−wsz
Ds er f c(

z−wst

2
√

Dst)
)

}

. (7)

where C(0, t) = 1 is the concentration at the bottom. This solution behaves as the example in Figure 1(b), i.e., asymptotic111

to a steady state for t → ∞. It can be seen that this analytical solution is reasonable because the closer to the bottom (the112

smaller z), the earlier and more intense the concentration responses.113
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(a) Step function (bottom input condition) (b) Step response function (responses at any elevation)

FIG. 1. Diagram of (a) the Step Function (bottom boundary condition) and (b) the Step Response Function (analytical solution for

C(z, t)). Note: According to the definition of a step function, the y-axis label of panel (a) is concentration in g/L; in panel (b) the y-axis

label of the step response function should also be concentration C(z, t) in g/L; here in panel (b) the y-axis label is a ratio because there

is C(0, t) on the right side of the equal sign in Eq. (7). When displaying the diagram, C(0, t) is divided to the left side of the equal sign.

B. Description of the traditional Physics-Informed Neural Networks (PINN)114

Physics Informed Neural Networks (PINNs) represent a cutting-edge revolutionary approach that seamlessly merges115

the capabilities of neural networks with the governing equations of physical systems. Developed specifically to address116

complex PDEs and other intricate physical phenomena, PINN has emerged as a versatile and powerful tool with broad117

applications across scientific research and engineering disciplines. The foundational structure of PINN, customized for118

solving PDEs, is illustrated in Figure 2. Within the PINN framework, randomly generated coordinates are input to a fully119

connected neural network. 50000 random iterations were made in the present work which is crucial and the core reason120

behind this work, that is, one should use a neural network rather than a finite difference scheme. This network efficiently121

computes both the temporal and spatial differential terms of the output values. These computed terms are then integrated122

into the governing equations, allowing for the derivation of a loss function. The ultimate goal is to minimize this loss123

function through training, to obtain a highly accurate and efficient solution to the underlying PDEs. This unique fusion of124

machine learning and physics-based modeling equips PINN to excel in tackling complex and nonlinear problems, which125

may pose challenges for traditional numerical techniques.126

Consider a system of parameterized PDEs given by:127

Nλ[û(x, t)] = f̂ (x, t), x ∈ Ω, t ∈ (t0,T ]

Bû(x, t) = ĝ(x, t), x ∈ ∂Ω, t ∈ [t0,T ]

û(x, t0) = ĥ(x), x ∈ Ω

(8)

where Nλ represents the linear or nonlinear differential operator with parameters λ, and B denotes the boundary operators128

such as Dirichlet, Neumann, and Robin. Ω and ∂Ω refer to the region of interest and its boundary. The region here can be129

one-dimensional, two-dimensional, or even multidimensional, but the context targeted in this article is one-dimensional;130

x is the spatial distance which is elevation z in the present case. In the general PINN approach, a DNN model can be131

substituted as the solution to PDEs (Eq. (8)). The optimal solution can then be obtained by minimizing the following loss132

function:133

L = LossPDE +ω1LossIC +ω2LossBC (9)
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with134

LossPDE =
1

NP

NP

∑
i=1

∣

∣ Nλ[ûNN(x
i, t i)]− f̂ (xi, t i)

∣

∣

2

LossBC =
1

NB

NB

∑
i=1

∣

∣

∣

∣

BûNN

(

x
i, t
)

− ĝ(xi, t)

∣

∣

∣

∣

2

LossIC =
1

NI

NI

∑
i=1

∣

∣

∣

∣

ûNN(x
i, t0)− ĥ(xi)

∣

∣

∣

∣

2

(10)

where ω1>0 and ω2>0 are the loss weighting coefficients for distinct boundaries that are set as fixed values manually in135

implementation according to experiences. LossPDE , LossIC, and LossBC represent the residuals of the governing equations,136

the loss associated with the given initial conditions, and the loss related to the prescribed boundary conditions, respectively.137

Thus, solving a partial differential equation is transformed into an optimization problem for a neural network.138

FIG. 2. Schematic diagram of the Physics-Informed Neural Network (PINN) structure.

The PINN method is different from traditional finite difference methods that discretize the domain equidistantly. PINN139

randomly samples the solution area, not equidistant, and resamples every iteration. Therefore, when the number of itera-140

tions is sufficient, enough points are sampled thus the accuracy is high. This article iterates 50000 times. In the present141

work, we know the exact expression of the initial and boundary conditions, and this allows us to perform a bootstrap over142

the whole continuous set. In other situations, one might not know the expressions but have a discrete measurement set.143

In such cases, one would need to do some interpolation on the boundary conditions first or perform some sort of bagging144

else.145

C. Normalized PINN with different temporal or spatial normalization strategies146

In this section, we present the innovative concept of a Normalized Physics-Informed Neural Network (NPINN), which147

incorporates temporal and/or spatial normalization strategies. This pioneering approach aims to address challenges asso-148

ciated with solving Settling-Diffusion Equations (SDEs) conveniently in ocean engineering.149

Temporal Normalized PINN (T-NPINN). The first pivotal augmentation introduced in NPINN involves a normalized150

temporal component. By subjecting the time variable to a normalization process, we adeptly mitigate challenges attributed151
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to protracted temporal dependencies, i.e.,152

t̃ =
t

T
. (11)

Then the governed equation of Eq. (8) can be expressed by153

Nλ[û(x, t̃)] = f̂ (x, t̃), x ∈ Ω, t̃ ∈ (t0/T,1]. (12)

This strategic intervention empowers the neural network to adeptly encapsulate and model the intricate temporal intri-154

cacies inherent to SDEs. Notably, this temporal normalization holds the potential to profoundly enhance the fidelity of155

SDE representation across expansive time intervals. This methodological refinement not only ensures the accuracy of the156

neural network’s predictions but also contributes to the overall efficiency of SDE solution strategies in ocean engineering157

domains.158

Spatial Normalized PINN (S-NPINN). Additionally, we introduce the Spatial Normalized PINN (S-NPINN), isolating159

and analyzing the spatial intricacies, allowing for an in-depth exploration of their influence on the SDE solution process.160

By further scaling the spatial variable into the unit interval [0,1]d where d is the dimension, as this article focuses on a161

one-dimensional vertical problem, d = 1, i.e.,162

x̃=
x−minΩ

maxΩ−minΩ
. (13)

Temporal and Spatial Normalized PINN (ST-NPINN). The last strategy is the Temporal and Spatial Normalized PINN163

(ST-NPINN). Hence, the governed equation of Eq. (8) can be written in terms of the scaled and characteristic quantities:164

Nλ[û(x̃, t̃)] = f̂ (x̃, t̃), x̃ ∈ [0,1]d , t̃ ∈ (t0/T,1]. (14)

The corresponding three types of normalized 1DV governing equations are described as follows:165

1

T

∂C

∂ t̃
=

∂

∂ z

[

Ds(z)
∂C

∂ z

]

−Ws

∂C

∂ z
(15)

and166

∂C

∂ t
=

1

X2

∂

∂ z̃

[

Ds(z̃)
∂C

∂ z̃

]

−Ws

Ws

X

∂C

∂ z̃
(16)

with the length of the domain X = maxΩ−minΩ, in the present case X is the whole water depth h, and167

1

T

∂C

∂ t̃
=

1

X2

∂

∂ z̃

[

Ds(z̃)
∂C

∂ z̃

]

− Ws

X

∂C

∂ z̃
. (17)

This combined temporal and spatial normalization paradigm enriches the accuracy, efficiency, and interpretability of168

SDE solutions, providing a novel avenue for advancing the understanding and application of PINN methodologies in169

ocean engineering research.170

III. PINN TRAINING171

The basic common setup of the PINNs used in the present paper is summarized in this section.172

A. Model setup173

Four candidate PINN models are tested in the present paper.174

• The traditional PINN without normalization: The introduction of this base model has been detailed in Section II B.175

Here, the solver employs the standard Physics-Informed Neural Network (PINN) model.176

• Three improved NPINNs with different normalization strategies: We conducted experiments comparing different177

normalization strategies. Specifically, we explored three strategies: (1) Temporal Normalized PINN (T-NPINN), (2)178

Spatial Normalized PINN (S-NPINN), and (3) Spatial-Temporal Normalized PINN (ST-NPINN).179
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B. Training Setup180

• Network configuration: All four models discussed in the previous sections share a consistent network configuration,181

ensuring a fair comparison. For the training phase, we employ a 5-layer fully connected neural network architecture182

with layer sizes of (100, 150, 80, 80, 50), utilizing the sine activation function for all hidden layers and a linear183

output layer for the final predictions. To maintain a balanced optimization process, we set ω1 = ω2 = 1 defined as184

in Eq. (9) according to common experience. The training process utilizes the Adam optimizer35 with an exponential185

learning rate strategy. The initial learning rate is set at 0.001, and it decays at 0.0005 every 100 training epochs. All186

models are trained for 50,000 epochs.187

• Sampling strategy: In each training epoch, we adopt Latin Hypercube Sampling (LHS) to intelligently select training188

points across the normalized temporal and spatial domains. Specifically, the number of points taken on the control189

equation NR = 10,000 (collocation points), the number of points taken on the boundary condition NB = 6,000190

(boundary points), and the number of points taken on the initial condition NI = 3,000 (initial points) in each epoch.191

In other words, we have taken 10000 points for each spacetime within the boundary, 6000 points for each spacetime192

under boundary conditions, and 3000 points for each spacetime under initial conditions. This ensures the models193

are well-trained and capable of capturing intricate spatiotemporal patterns. During the testing phase, we employ194

uniform sampling to gather testing data within the domain Ω (or its boundary ∂Ω).195

• Criterion selection: To assess the accuracy of the models, we employ the Mean Square Error (MSE) and the Relative196

Error Loss (REL) as evaluation metrics. These metrics are defined as follows:197

MSE =
1

N′

N′

∑
i=1

(

ũ(xi, t i)−u∗(xi, t i)
)2

(18)

and198

REL =
∑

N′
i=1

(

ũ(xi, t i)−u∗(xi, t i)
)2

∑
N′
i=1 (u

∗(xi, t i))2
(19)

where ũ(xi, t i) denotes the approximate solution predicted by the neural network, u∗(xi, t i) represents the ex-199

act/reference solution, and {(xi, t i)}N′
i=1 constitutes the set of testing points. The value of N′ denotes the total number200

of testing points.201

• Visualization: We logged the MSE and REL of the test set at intervals of 1000 steps and depicted their trends202

graphically. Concurrently, we conducted a comparative analysis by visualizing the 3D plots generated by NPINN’s203

prediction test set alongside the ground truth images. Additionally, we graphically represented the point-wise abso-204

lute errors between the prediction outcomes of the four models and the corresponding actual values.205

• Computing power resources: Our implementation uses PyTorch (version 1.12.1) on a workstation with 256 GB of206

RAM and a single NVIDIA GeForce GTX 2080Ti GPU with 12 GB of memory. These computational resources207

enable efficient and accurate training of the NPINN model and facilitate insightful analysis of its performance. The208

time taken per iteration with the computing power resources is 0.006119 seconds.209

The details of the neural network architectures are summarized in Table I.210211

IV. VALIDATION OF PINNS IN LINEAR SETTLING–DIFFUSION EQUATION212

In this section, we first train the four candidate models to address the 1DV equation with a depth constant Ds (linear213

Settling–Diffusion Equation). To assess their efficacy, we juxtapose their predictions against the benchmark analytical214

solution in Section II A.215

This section presents a comprehensive analysis of the outcomes obtained from the four distinct models. A compara-216

tive evaluation is conducted through visual representations (Figure 3), error analysis (Figure 4), and convergence studies217

(Figure 5) which offer a detailed insight into the performance of the models.218
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TABLE I. Network Configuration and Training Parameters

Parameter Value

Architecture 5-layer fully connected network

Hidden Layer Sizes (100, 150, 80, 80, 50)

Activation Functions Sine (hidden layers), Linear (output layer)

Training Point Selection Latin Hypercube Sampling (LHS)

Epochs 50000

Learning Rate Exponential Decay

Initial Learning Rate 0.001

Learning Rate Decay Rate 0.0005 (every 100 epochs)

Collocation points 10000

Boundary points 6000

Initial points 3000

The error heatmap of T-NPINN demonstrates a broader and more distributed pattern in contrast to the other three models,219

particularly evident in the extended range of the blue area. This distinct feature signifies that T-NPINN exhibits enhanced220

training accuracy. The normalization of time variables, a defining characteristic of T-NPINN, is attributed to this improve-221

ment, effectively accommodating intricate spatiotemporal dynamics. An intriguing observation is the descending trend of222

point-wise errors, illustrating an ascending order of accuracy: PINN, S-NPINN, ST-NPINN, and T-NPINN (Figure 4).223

Convergence analysis, as depicted in Figures 5(a) and 5(b), reveals that T-NPINN achieves a faster and more stable224

convergence rate than the other PINN models. This expedited convergence can be attributed to the incorporation of225

time normalization within the T-NPINN architecture, which has been detailed in Section II C. The inherent ability of226

this normalization technique to alleviate potential long-term dependencies and temporal evolution within neural networks227

contributes significantly to T-NPINN’s superior performance.228

The quantitative assessment outlined in Table II underscores T-NPINN’s prowess. The MSE for T-NPINN exhibits a229

remarkable reduction than the other PINN models, reflecting its ability to approximate solutions more accurately. Sim-230

ilarly, REL for T-NPINN is substantially diminished, underscoring its exceptional proficiency in tackling intricate and231

long-duration spatiotemporal Settling-Diffusion equations.232

In summary, including the time variable normalization within T-NPINN yields substantial improvements in training233

accuracy and convergence speed, especially when addressing intricate spatiotemporal Settling-diffusion equations. The234

normalization process inherently enhances the network’s precision, with T-NPINN exhibiting the highest accuracy when235

solely normalizing the time variable.236

The small gap between the T-NPINN and the analytic solution demonstrates the ability of the T-NPINN to approximate237

the exact solution, which validates the ability of T-NPINN in this case.238

TABLE II. Performance of different models in constant Ds scenario

MSE REL

PINN 3.082×10−1 4.879

S-NPINN 1.006×10−2 1.592×10−1

T-NPINN 4.078×10−5 6.455×10−4

ST-NPINN 1.360×10−4 2.168×10−3

FDM 4.000×10−6 5.900×10−5
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(a) Analytical Solution (Eq. (7)) (b) T-NPINN Solution

FIG. 3. Comparation between the (a) analytical solution, and (b) T-NPINN solution with constant C(0, t) = 1 g/L at the bottom and

depth constant Ds.

V. APPLICATION OF PINNS IN NON-LINEAR SETTLING–DIFFUSION EQUATION239

The validated PINN models from Section IV are used for predicting the SSC distribution in more complicated scenarios,240

i.e., the linear, parabolic, and arbitrary depth distribution of Ds where analytical solutions are unavailable.241

A. Scenario 1: Linear depth distribution of Ds242

1. PINN settings243

In this scenario, we investigate the behavior of the proposed method when the eddy diffusivity Ds follows a linear244

depth distribution, i.e., Ds(z) = 0.0001z. The spatial and temporal domains, as well as the boundary conditions, remain245

the same as those in Section IV. Since no analytical solution is available for comparison, we employ the finite difference246

method (FDM) as a benchmark, which has shown good performance in the constant Ds scenario as shown in Table II (The247

MSE and REL of T-NPINN and FDM are at the similarly highest level). All the model training settings are identical to248

Section IV (Table I).249

2. Results250

A comparative evaluation is conducted through visual representations (Figure 6). The point-wise error of both PINN251

and NPINN models is illustrated in Figure 7, considering the linear depth distribution of Ds. Additionally, Figure 8 shows252

the MSE and REL curves during training for all the models. The key results are summarized in Table III and detailed253

discussions will be made in Section VI.254

B. Scenario 2: Parabolic depth distribution of Ds255

1. PINN settings256

Taking the Ds in Eq. (6) as Ds(z) = 0.001(z/5− 1)2, i.e., the eddy diffusivity Ds(z) is a parabolic function of z. The257

range of spatial and time domain and the boundary conditions are identical to those in Section IV. Since there is no258
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(a) Point-wise error for PINN (b) Point-wise error for S-NPINN

(c) Point-wise error for T-NPINN (d) Point-wise error for ST-NPINN

FIG. 4. Point-wise error of 4 candidate models with constant C(0, t) = 1 g/L at the bottom and depth constant Ds. (a) For PINN. (b) For

S-NPINN. (c) For T-NPINN. (d) For ST-NPINN.

theoretical solution to compare, the FDM is again used to compare. All the model training settings are identical to Section259

IV (Table I).260

2. Results261

A comparative evaluation is conducted through visual representations (Figure 9). The point-wise error of both PINN262

and NPINN models is illustrated in Figure 10, considering the parabolic depth distribution of Ds. Additionally, Figure 11263

shows the MSE and REL curves during training for all the models. The key results are summarized in Table III and detailed264

discussions will be made in Section VI.265
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0 10 20 30 40 50

epoch/1000

10-4

10-2

100

M
S
E

[g
/
L
]

PINN T-NPINN

S-NPINN ST-NPINN

(a) Mean square error of the 4 candidate PINN models

0 10 20 30 40 50

epoch/1000

10-4

10-2

100

R
E
L

PINN T-NPINN

S-NPINN ST-NPINN

(b) Relative error of the 4 candidate PINN models

FIG. 5. The test errors curve during training with constant C(0, t) = 1 g/L at the bottom and depth constant Ds. (a) Mean square error

of the 4 candidate PINN models. (b) Relative error of the 4 candidate PINN models.

(a) FDM Solution (b) T-NPINN Solution

FIG. 6. Comparison between the (a) FDM and (b) T-NPINN solutions with constant bottom C(0, t) = 1 g/L and linear depth distribution

of Ds.

C. Scenario 3: Arbitrary (exponential) depth distribution of Ds266

1. PINN settings267

Taking the Ds in Eq. (6) as Ds(z) = 0.001exp(−z), i.e., the eddy diffusivity Ds(z) is a exponential function of z. The268

range of spatial and time domains and the boundary conditions are identical to those in Section IV. We also take the FDM269

solution as the benchmark. All the model training settings are identical to Section IV (Table I).270

2. Results271

A comparative evaluation is conducted through visual representations (Figure 12). The point-wise error of both PINN272

and NPINN models is illustrated in Figure 13, considering the arbitrary depth distribution of Ds. Additionally, Figure 14273

shows the MSE and REL curves during training for all the models. The key results are summarized in Table III and detailed274
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(a) Point-wise error for PINN (b) Point-wise error for S-NPINN

(c) Point-wise error for T-NPINN (d) Point-wise error for ST-NPINN

FIG. 7. Point-wise error of the 4 candidate models with constant bottom C(0, t) = 1 g/L and linear depth distribution of Ds. (a) For

PINN. (b) For S-NPINN. (c) For T-NPINN. (d) For ST-NPINN.

discussions will be made in Section VI.275

VI. DISCUSSION276

A. The optimal PINN model277

The quantitative assessment outlined in Table III underscores T-NPINN’s prowess. The MSE for T-NPINN exhibits a278

remarkable reduction in compared to the traditional PINN, reflecting its ability to approximate solutions more accurately.279

Similarly, the REL for T-NPINN is substantially diminished, underscoring its exceptional proficiency in tackling intricate280

and long-duration spatiotemporal Settling-Diffusion equations.281

From the visual representations, error analysis, and convergence plots, it can be seen that T-NPINN demonstrates a282

broader and more distributed pattern in contrast to the other three models. An intriguing observation is the descending283

trend of point-wise errors, illustrating an ascending order of accuracy: PINN, S-NPINN, ST-NPINN, and T-NPINN. The284

time normalization, a defining characteristic of T-NPINN, is the most efficient improvement, effectively accommodating285

intricate spatiotemporal dynamics.286
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S-NPINN ST-NPINN

(a) Mean square error of the 4 candidate PINN models
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PINN T-NPINN

S-NPINN ST-NPINN

(b) Relative error of the 4 candidate PINN models

FIG. 8. The test errors curve during training the 4 candidate models with constant bottom C(0, t) = 1 g/L and linear depth distribution

of Ds. (a) Mean square error of the 4 candidate PINN models. (b) Relative error of the 4 candidate PINN models.

(a) FDM Solution (b) T-NPINN Solution

FIG. 9. Comparison between the (a) FDM and (b) T-NPINN solutions with constant bottom C(0, t) = 1 g/L and parabolic depth

distribution of Ds(z).

T-NPINN achieves a faster and more stable convergence rate than the conventional PINN model. This expedited con-287

vergence can be attributed to the incorporation of time normalization within the T-NPINN architecture which has been288

detailed in Section II C. The inherent ability of this normalization technique to alleviate potential long-term dependencies289

and temporal evolution within neural networks contributes significantly to T-NPINN’s superior performance.290

Although the spatial (S-NPINN) and spatiotemporal normalizations (ST-NPINN) don’t seem to be the best approaches,291

they are maintained in this paper, because we were trying to test and find the optimal normalization strategies. At present,292

PINN calculations are generally carried out on a normalized domain, with PINN calculations being carried out on a293

maximum range of [0-4]36. The present work conducted PINN calculations for 1800 s by normalizing the independent294

variables, so it is necessary to explore different normalization schemes, and the result is that T-NPINN performs the best.295

We believe this is also useful information that other more complex solutions are unnecessary.296

In summary, introducing the time variable normalization within T-NPINN yields substantial improvements in training297

accuracy and convergence speed, especially when addressing intricate spatiotemporal SDEs. The normalization process298

inherently enhances the network’s precision, with T-NPINN exhibiting the highest accuracy when solely normalizing the299

time variable.300
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(a) Point-wise error for PINN (b) Point-wise error for S-NPINN

(c) Point-wise error for T-NPINN (d) Point-wise error for ST-NPINN

FIG. 10. Point-wise error of the 4 candidate models with constant bottom C(0, t) = 1 g/L and parabolic Ds(z). (a) For PINN. (b) For

S-NPINN. (c) For T-NPINN. (d) For ST-NPINN.

B. Limitations and future works301

The current simulation of the working conditions for the bottom boundary for the step function input, the future will302

develop the bottom boundary for the impulse function input1,37, to solve the more realistic common working conditions.303

In the present case of SSC in the ocean, the solutions are smooth and quite regular throughout the domain. SSC profiles304

along the water depth over the seabed normally do not show any significant peaks because the mixing of suspended sed-305

iments is influenced by gravity and its profile generally increases towards the bottom1. Besides, marine sedimentologists306

care more about the average suspended sediment concentration profile in estimating the sediment transport fluxes38,39. Our307

model starts with simple settling velocity fields, and the application range is relatively narrower.308

However, the mass transport problem is not only related to settling or mixing in the ocean40–42, the equation we try309

to solve appears in other fields such as atmosphere, charged particle transport, etc. In other cases like porous media,310

well-behaved enough concentration fields might not hold anymore. Solutions may have strong oscillations or one or more311

peaks. This is a limitation for accurate modeling in the ocean and needs further investigation. It is planned that for more312

realistic cases with oscillations, peaks, and impulses, the modeling can be tried through a multi-scale neural network313

(MscaleDNN)43,44. MsacleDNN is an excellent model for multi-scale problems with oscillations, peaks, and impulses by314

converting the high-frequency component into a low-frequency space45–47.315

Besides, eddy diffusivity might be stiff even for good-looking carrier flows (e.g. cell flows)48,49. with (locally) anoma-316
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(a) Mean square error of the 4 candidate PINN models
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(b) Relative error of the 4 candidate PINN models

FIG. 11. The test errors curve during training the 4 candidate models with constant bottom C(0, t) = 1 g/L and parabolic depth distribu-

tion of Ds. (a) Mean square error of the 4 candidate PINN models. (b) Relative error of the 4 candidate PINN models.

(a) FDM Solution (b) T-NPINN Solution

FIG. 12. Comparation between the (a) FDM and (b) T-NPINN solutions with constant bottom C(0, t) = 1 g/L and arbitrary (exponential)

depth distribution of Ds.

lous diffusion, future works will be done through robust loss functions and Fourier feature network with domain decom-317

position technique (DFFN). The robust loss function will suppress effectively the adverse effect of abnormal value for the318

neural network. DFFN model will focus on the local domain with abnormal values and improve the performance of neural319

networks50–52.320

Finally, many approaches have been proposed to tackle transport problems by encapsulating small and mesoscale trans-321

port by carrier flow in the eddy diffusivity, especially because the carrier flow can be turbulent/stochastic and so the settling322

velocity might have these components too when analyzed at small enough scales53. Further investigations into the different323

scales are also a meaningful generalization.324

VII. CONCLUSIONS325

Analytical solutions are practical tools in ocean engineering applications. However, their derivation is often constrained326

by the complexities of the real world. This underscores the necessity for alternative approaches. In this study, the potential327
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(a) Point-wise error for PINN (b) Point-wise error for S-NPINN

(c) Point-wise error for T-NPINN (d) Point-wise error for ST-NPINN

FIG. 13. Point-wise error of the 4 candidate models with constant bottom C(0, t) = 1 g/L and arbitrary (exponential) Ds(z). (a) For

PINN. (b) For S-NPINN. (c) For T-NPINN. (d) For ST-NPINN.
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(a) Mean square error of the 4 candidate PINN models
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(b) Relative error of the 4 candidate PINN models

FIG. 14. The test errors curve during training the 4 candidate models with constant bottom C(0, t) = 1 g/L and arbitrary (exponential)

depth distribution of Ds. (a) Mean square error of the 4 candidate PINN models. (b) Relative error of the 4 candidate PINN models.
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TABLE III. Summary of the model performance in different scenarios

Model Scenario Ds(z) MSE REL

PINN 1 0.0001z 2.05×10−1 3.21

2 0.001(z/5−1)2 4.25×10−1 6.69

3 0.001exp(−z) 1.35×10−1 2.223

S-NPINN 1 0.0001z 5.39×10−2 8.45×10−1

2 0.001(z/5−1)2 2.16×10−3 3.41×10−2

3 0.001exp(−z) 3.31×10−3 5.43×10−2

ST-NPINN 1 0.0001z 1.32×10−4 2.07×10−3

2 0.001(z/5−1)2 5.69×10−4 8.96×10−3

3 0.001exp(−z) 1.79×10−3 2.93×10−2

T-NPINN 1 0.0001z 5.11×10−5 8.00×10−4

2 0.001(z/5−1)2 3.66×10−5 5.76×10−4

3 0.001exp(−z) 3.83×10−5 6.28×10−4

of Physics-Informed Neural Networks (PINN) in approaching the solution of the one-dimensional suspended sediment328

settling-diffusion equation with arbitrary Ds profiles is explored. A new approach of Temporal Normalized Physics-329

Informed Neural Networks (T-NPINN) which normalizes the time component is proposed and achieves a remarkable330

accuracy level (Mean Square Error of 10−5 and the relative error loss of 10−4). Detailed conclusions can be summarized331

as follows:332

(1) An analytical solution to the 1DV governing equation is derived. The analytical expression assumes that the eddy333

diffusivity Ds and settling velocity ws are uniform along the depth and the bottom reference concentration is a step function.334

(2) The potential of T-NPINN in solving the 1DV suspended sediment convection-diffusion equation with depth uniform335

Ds profiles is validated by comparing it to the analytic solution. The T-NPINN outperforms other PINN normalization336

strategies. It achieves a remarkable accuracy level (Mean Square Error of 10−5 and the relative error loss of 10−4),337

validating the efficiency of the T-NPINN method.338

(3) The validated T-NPINN is then used in more complex cases of linear, parabolic, and arbitrary (exponential) Ds339

profiles when analytical expressions are unavailable. It keeps a remarkable accuracy level (Mean Square Error of 10−5 and340

the relative error loss of 10−4), proving its ability for more complex scenarios when analytical solutions are not available.341

The present study reveals the potential of T-NPINN, it bridges the gap between analytical and numerical approaches,342

and it emerges as an indispensable tool for addressing scenarios where numerical models encounter limitations, thereby343

enriching the toolkit available for oceanic research and engineering.344

APPENDIX345

To visualize more closely how well the T-NPINN solution matches the numerical solution, the comparison profile of346

FDM and T-NPINN at different depths are shown in Figure 15. T-NPINN can fit the concentration values at different347

depths very close to FDM, which also means that our proposed T-NPINN method can be applied to nonlinear SDE when348

Ds is linearly distributed.349

From Figure 16, we can see that when solving the parabolic situation where the distribution of Ds is more complex,350

T-NPINN can maintain good stability and almost completely coincide with the FDM solution with higher accuracy in351

terms of image fitting.352
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FIG. 15. Comparison of FDM and T-NPINN at Different Depths with a linear depth distribution of Ds
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FIG. 16. Comparison of FDM and T-NPINN at Different Depths with a parabolic depth distribution of Ds
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