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Abstract

Background and Aims: The brain age gap (BAG), calculated as the difference between a

machine learning model-based predicted brain age and chronological age, has been

increasingly investigated in psychiatric disorders. Tobacco and alcohol use are associated

with increased BAG; however, no studies have compared global and regional BAG across

substances other than alcohol and tobacco. This study aimed to compare global and

regional estimates of brain age in individuals with substance use disorders and healthy

controls.

Design: This was a cross-sectional study.

Setting: This is an Enhancing Neuro Imaging through Meta-Analysis Consortium

(ENIGMA) Addiction Working Group study including data from 38 global sites.

Participants: This study included 2606 participants, of whom 1725 were cases with a

substance use disorder and 881 healthy controls.

Measurements: This study used the Kaufmann brain age prediction algorithms to gener-

ate global and regional brain age estimates using T1 weighted magnetic resonance imag-

ing (MRI) scans. We used linear mixed effects models to compare global and regional

(FreeSurfer lobestrict output) BAG (i.e. predicted minus chronological age) between indi-

viduals with one of five primary substance use disorders as well as healthy controls.
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Findings: Alcohol use disorder (β = −5.49, t = −5.51, p < 0.001) was associated with higher

global BAG, whereas amphetamine-type stimulant use disorder (β = 3.44, t = 2.42,

p = 0.02) was associated with lower global BAG in the separate substance-specific models.

Conclusions: People with alcohol use disorder appear to have a higher brain-age gap

than people without alcohol use disorder, which is consistent with other evidence of the

negative impact of alcohol on the brain.
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INTRODUCTION

Considerable research has recently been undertaken on brain-based

markers of aging. Brain age estimation uses machine learning by train-

ing and testing a model on large training and test datasets, then using

this model to predict an individual’s brain age in an independent data-

set [1]. The most frequently used outcome of interest is the difference

between an individual’s model-predicted brain age and their chrono-

logical age (i.e. the brain age gap [BAG]). Positive BAG values indicate

greater brain age estimates (i.e. older appearing brains), whereas nega-

tive BAG values indicate smaller brain age estimates (i.e. younger

appearing brains), relative to chronological age.

The BAG, otherwise known as brain predicted age difference

(brain-PAD) or brain age gap estimation (brainAGE), has been investi-

gated in a range of psychiatric disorders [1–4], and has been linked to

cardiovascular risk factors [5] and lifestyle-related risk factors [6].

Among lifestyle-related risk factors, substance use is of particular

interest because of its well-established link with increased morbidity

and mortality [7].

In substance use disorder, tobacco and alcohol use are associ-

ated with a greater BAG [8–11]. For example, an average BAG of

4 years has been reported in those with alcohol use disorder versus

those without alcohol use disorder, with evidence that the degree

of accentuated brain aging is predicted by the amount of lifetime

cumulative alcohol consumed [6]. Similarly, a BAG of 3.4 years has

been reported in smokers versus non-smokers [12], with evidence

of a dose-dependent relationship between smoking and brain

age [13].

Several gaps in the literature on BAG in substance use disorder

remain. For instance, we were unable to identify studies investigating

BAG in substance use disorders other than alcohol and nicotine

(e.g. cannabis, cocaine and amphetamine-type stimulants), or that

investigate the associations between substance use disorder and

region-specific BAG. Therefore, the present study aimed to use a

previously validated machine learning model of brain age to compare

relative global and predefined regional brain aging in individuals with a

range of substance use disorders (i.e. alcohol, amphetamine-type

stimulants, cannabis, cocaine, and nicotine) as well as healthy controls.

More specifically, our objectives were to (1) establish the existence of

group differences in global BAG between those with one of five

substance use disorders and healthy controls; and (2) establish the

existence of group differences in each regional BAG between those

with one of five substance use disorders and healthy controls.

METHODS

Participants

Case and control data were contributed by 38 sites (n = 2606)

participating in the Addiction Working Group of the Enhancing Neuro

Imaging through Meta-Analysis Consortium (ENIGMA) consortium

(https://www.enigmaaddictionconsortium.com), of whom 1725 were

diagnosed with current Diagnostic and Statistical Manual of Mental

Disorders IV (DSM-IV) substance use disorder on at least one of the

five substances of interest, namely alcohol, amphetamine-type stimu-

lants, cannabis, cocaine and nicotine. Polysubstance use was permitted

provided that individuals were not diagnosed with primary polysub-

stance use disorder. A lifetime history of neurological disease, a current

DSM-IV axis I diagnosis other than depressive and anxiety disorders or

any contraindication for magnetic resonance imaging (MRI) were con-

sidered exclusionary. Recreational use of addictive substances among

control participants (mainly nicotine and alcohol) was not considered

exclusionary, provided they were not diagnosed as dependent.

Measures

Each site collected individual-level age and sex data, as well as diagno-

ses, using a variety of instruments, for substance use disorder on

alcohol, cannabis, cocaine, amphetamine-type stimulants or nicotine

(see Table S1) [14].

Structural MRI data acquisition, processing and quality
control

Structural T1-weighted MRI brain scans were acquired from all partici-

pants at each site. Site-specific scanner and acquisition details are

provided in Table S1. Anonymized T1-weighted Neuroimaging Infor-

matics Technology Initiative scans were prepared with FreeSurfer ver-

sion 5.3 (http://surfer.nmr.mgh.harvard.edu/) [15]. Processed scans
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were visually inspected for quality based on ENIGMA QC protocols

(https://enigma.ini.usc.edu/protocols/imaging-protocols/protocol-for-

quality-control-and-summary-statistics/). Furthermore, the Euler num-

ber, which is derived from the number of holes observed in a spherical

cortical reconstruction of the brain, and has demonstrated utility as a

measure of scan quality [16], was included as a covariate in all ana-

lyses. Analyses were performed on the Vermont Advanced Computing

Center (VACC) system’s Bluemoon cluster (https://www.uvm.edu/

vacc/kb/knowledge-base/bluemoon/) at the University of Vermont.

For the brain age estimation, regional volume, thickness and

surface area features derived by FreeSurfer 5.3 [17], as well as from

180 regions delineated using a multimodal cortical parcellation

algorithm [18], were extracted for each participant and fed into the

Kaufmann [4] male and female algorithms (available at https://github.

com/tobias-kaufmann/brainage). These algorithms were trained and

tested separately for males and females to account for sex differences

in brain morphometry and age estimation. More specifically, the

Kaufmann model was trained on 35 474 healthy individuals

(n = 18 990 females) age 3 to 89 years. The sex-specific models are

based on gradient tree boosting, which predicts the age of the brain

based on a set of thickness, area and volume features. Kaufmann

et al. [4] used fivefold cross-validations, which revealed a high

correlation between chronological age and predicted brain age (males

r = 0.94, females r = 0.93) for both sexes separately. The regional pre-

dicted brain age estimates were generated using the FreeSurfer

Lobestrict segmentation from the occipital, frontal, temporal, parietal,

cingulate, insula and subcortical (which includes the cerebellar)

regions. These algorithms have been further validated in subsequent

studies [19–21]. In favor of using harmonized predicted brain age esti-

mates across datasets, we elected to test the Kaufmann algorithms in

this dataset rather than generating yet another algorithm.

Global and regional brain age prediction accuracy
among cases and controls

In the control group, the correlation between chronological age

and predicted global brain age estimate (see Figure 1) was 0.69

(P < 0.001), with a mean absolute error (MAE) of 7.1 years. The corre-

sponding correlation among cases was 0.64 (P < 0.001), with an MAE

of 8.2 years. The correlation of chronological age with Kaufmann

regional predicted brain age and associated MAE is presented in

F I GU R E 1 Scatter plot of chronological age and predicted age by substance use disorder group.

T AB L E 1 Regional BAG and MAE.

Cingulate Frontal Insula Occipital Parietal Subcortical Temporal

Cases

R 0.46 0.56 0.48 0.38 0.52 0.52 0.44

MAE 15.3 12.3 12.7 12.9 13.2 8.6 11.9

Controls

R 0.52 0.63 0.50 0.37 0.57 0.60 0.46

MAE 12.2 9.4 11.4 12.2 10.6 8.0 11.1

Abbreviations: BAG, brain age gap; MAE, mean absolute error; R, Pearson’s correlation.

MEGA-ANALYSIS OF SUBSTANCE USE DISORDER BAG 1939
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Table 1. Among the controls, the correlation between chronological

age and cingulate (0.52; 12.2), frontal (0.63; 9.4), insula (0.5; 11.4),

occipital (0.37; 12.2), parietal (0.57;10.6), subcortical/cerebellar (0.6;

8.0) and temporal (0.46; 11.1) brain age estimates was moderate with

a high mean absolute error. The correlation between chronological

age and cingulate (0.46; 15.3), frontal (0.56; 12.3), insula (0.48; 12.7),

occipital (0.38; 12.9), parietal (0.52; 13.2), subcortical/cerebellar (0.52;

8.6) and temporal (0.44; 11.9) brain age estimates among the cases

was similarly moderate and with a high mean absolute error.

Statistical analysis

The authors would like to note that this analysis was not pre-

registered and that the results should be considered exploratory.

Groups were compared using analysis of variance (ANOVA) and χ2

tests. A mega-analysis was conducted using the predicted brain age

estimates from the Kaufmann et al. [4] global and regional brain age

models, as applied to T1-weighted MRI scans for individual partici-

pants. Global and regional BAG were then calculated for each individ-

ual as the predicted brain age estimate minus chronological age. For

objective 1, similar to the original Kaufmann analysis, we fitted a linear

mixed-effects model including all 2606 subjects to predict global BAG

with age, age squared, sex and group (controls and 5 substance use

disorder groups) as fixed effects covariates and site included as a

random effect. For objective 2, linear mixed effects models were

constructed for each regional BAG estimate. For objectives 1 and

2, the least square means for the factors of the group variable,

consisting of six groups, were false discoveryrate (FDR)-corrected.

We ran separate linear mixed-effects models for each substance

as secondary or sensitivity analyses. For these analyses, we included

only sites with cases and controls matched for age and sex to identify

differences in global BAG as a function of the specific substance of

use. For example, the alcohol model included only sites with individ-

uals with an alcohol use disorder and age- and sex-matched healthy

controls. This was to account for the systematic age differences

detected between individuals with different substance use disorders.

All linear mixed-effects models were estimated using the restricted

maximum likelihood approach and the nloptwrap optimizer.

RESULTS

Sample characteristics

Comparison of cases (n = 1725) with controls (n = 881) on demo-

graphic characteristics found that those with nicotine and cannabis use

disorder were 2 to 6 years younger on average than those with alcohol,

cocaine and amphetamine-type stimulant use disorder (see Table 2).

A substance-specific difference was also revealed in the sex distribu-

tion of the sample (p < 0.001), with relatively few female participants

among cocaine-dependent participants, and a relatively large propor-

tion of female participants among nicotine-dependent subjects. T
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Substance use disorder case/control differences in
global BAG

The mean global and regional BAG per substance group is presented

in Table 2 and Figure 2. In model 1, an increase in age squared (β =

−0.006, t = −3.92, p < 0.001) was associated with lower BAG. Neither

age (β = 0.11, t = 0.92, p = 0.4), sex (β = −0.35, t = −0.97, p = 0.3) nor

Euler number (β = −0.001, t = −0.61, P = 0.5) were associated with

differences in global BAG. The FDR corrected least square means with

control as the reference category revealed a significant difference

between controls and alcohol (β = 4.51, t = 5.95, P < 0.001), trend

differences for amphetamine-type (β = −2.78, t = −1.91, P = 0.09) and

cocaine (β = 1.49, t = 2.10, P = 0.09) and no differences for cannabis

(β = −0.60, t = −0.79, P = 0.5) and nicotine (β = 0.17, t = 0.19, P = 0.9)

in global BAG.

Substance use disorder case/control differences in
regional BAG

The FDR-corrected least square means (LSM) for the substance use

factors for all the regional models are presented in Table 3 and

Figure 3. Alcohol was associated with significantly greater BAG than

controls in all of the regional models, the cingulate (β = 3.4, t = 3.5,

P = 002), frontal (β = 3.54, t = 3.85, P < 0.001), occipital (β = 3.39,

t = 3.39, p = 0.004), parietal (β = 3.39, t = 3.61, P = 0.002), subcorti-

cal/cerebellar (β = 3.23, t = 3.46, P = 0.003) and temporal (β = 5.25,

t = 5.17, P < 0.001), except for the insula (β = 2.43, t = 2.38, P = 0.07)

model. The regional BAG for amphetamine-type stimulants was not

significantly different from the controls in all of the models, cingulate

(β = 1.35, t = 0.78, P = 0.5), frontal (β = 1.34, t = 0.80, P = 0.5), insula

(β = 0.89, t = 0.49, P = 0.8), occipital (β = 0.30, t = 0.17, P = 0.9),

parietal (β = 0.95, t = 0.56, P = 0.6) and temporal (β = −0.89, t = −0.49,

p = 0.8), apart from the subcortical/cerebellar (β = −5.04, t = −2.84,

P = 0.01) model where amphetamine-type stimulants was associated

with smaller BAG compared with controls. Similarly, cannabis was also

not associated with significantly different regional BAG when com-

pared with controls, with cingulate (β = 0.81, t = 0.90, P = 0.5), frontal

(β = −0.42, t = −0.48, P = 0.6), insula (β = −0.74, t = −0.77, P = 0.7),

occipital (β = 1.24, t = 1.32, P = 0.2), parietal (β = 0.50, t = 0.57,

P = 0.6), subcortical/cerebellar (β = −1.48, t = −1.60, P = 0.2) and tem-

poral (β = 0.43, t = 0.46, P = 0.8) models all P > 0.5. Cocaine was asso-

ciated with a greater BAG compared with controls in the cingulate

(β = 2.65, t = 3.07, P = 0.005 model) and occipital (β = 2.67, t = 3.00,

P = 0.007) models. The insula (β = 1.99, t = 2.18, P = 0.07) was associ-

ated with a trend level difference only, and none of the other models

reached significance with frontal (β = 1.67, t = 2.02, P = 0.1), parietal

(β = 1.65, t = 1.97, P = 0.1), subcortical/cerebellar (β = 0.49, t = 0.57,

P = 0.6), and temporal (β = 1.35, t = 1.50, P = 0.3). Nicotine was not

associated with differences in regional BAG in any of the models,

either, cingulate (β = 0.68, t = 0.56, P = 0.6), the frontal (β = 1.21,

t = 1.07, P = 0.5), insula (β = 0.07, t = 0.06, P = 0.9), occipital (β =

−1.87, t = −1.52, P = 0.2), parietal (β = 0.56, t = 0.48, P = 0.6), subcor-

tical/cerebellar (β = −0.5, t = −0.48, P = 0.6), and temporal (β = 0.12,

t = 0.10, P = 0.9).

For the regional BAG models, age was not associated with differ-

ences in the cingulate (β = 0.11, t = 0.75, P = 0.5), frontal (β = 0.39,

t = 2.85, P = 0.004), insula (β = −0.03, t = −0.17, P = 0.9), occipital

(β = −0.34, t = −2.31, P = 0.02), parietal (β = 0.03, t = 0.20, P = 0.8),

subcortical/cerebellar (β = −0.25, t = −1.65, P = 0.1), nor temporal

(β = 0.03, t = 0.19, P = 0.9). Greater age squared was associated with

smaller BAG in the cingulate (β = −0.009, t = −5.02, P < 0.001), frontal

(β = −0.01, t = −5.96, P < 0.001), insula (β = −0.007, t = −3.44,

P < 0.001), occipital (β = −0.004, t = −2.24, P = 0.03), parietal (β =

F I GU R E 2 Boxplot of global brain age gap
(BAG).
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−0.008, t = −4.17, P < 0.001) and temporal (β = −0.008, t = −4.04,

P < 0.001) models, but not with the subcortical/cerebellar (β =

−0.002, t = −1.01, P = 0.3) model. Male sex was associated with

greater regional BAG in the cingulate (β = 0.88, t = 2.17, P = 0.03),

frontal (β = 0.94, t = 2.39, P = 0.02), occipital (β = 1.21, t = 2.86,

P = 0.004), parietal (β = 0.97, t = 2.46, P = 0.01) and temporal

(β = 0.84, t = 1.99, P = 0.05) models, but not in the insula (β = 0.47,

t = 1.09, P = 0.3) model, and trend-level difference in the subcortical/

cerebellar (β = −0.72, t = −1.67, P = 0.09) model. Euler number was

inversely associated with regional BAG in the insula (β = −0.007, t =

−3.03, P = 0.003) and parietal (β = −0.009, t = −4.37, P < 0.001)

models, but not the occipital (β = −0.001, t = −0.63, P = 0.5), subcorti-

cal/cerebellar (β = 0.003, t = 1.58, P = 0.1) and temporal (β = −0.0002,

t = −0.09, P = 0.9) models, and trend-level only in the cingulate (β =

−0.004, t = −1.74, P = 0.08) and frontal (β = −0.003, t = −1.73,

P = 0.08) models.

Substance use disorder case/control differences
according to the primary substance of use in
global BAG

Alcohol use disorder (β = −5.49, t = −5.51, P < 0.001) was associated

with higher global BAG (see Table 4), whereas amphetamine-type

stimulant use disorder (β = 3.44, t = 2.42, P = 0.02) was associated

with lower global BAG. Neither cannabis (β = 0.47, t = 0.67, P = 0.5),

cocaine (β = −1.24, t = −1.65, P = 0.1), nor nicotine (β = −0.44, t =

−0.38, P = 0.7) use disorders were associated with differences

compared to healthy controls in global BAG in the separate substance

specific models.

DISCUSSION

To date, this is the first study to investigate the BAG in substance use

disorders beyond alcohol and nicotine. Consistent with the extant

body of knowledge, alcohol was associated with a greater, positive

BAG compared to healthy controls across all global and regional BAG

models, indicating an older appearing brain for those with alcohol use

disorder. Amphetamine-type stimulant use disorder was associated

with a smaller, but still positive BAG in the amphetamine-type

stimulant-only global BAG model, meaning that the model predicted

an older age for those with an amphetamine-type stimulant use

disorder, but less than that predicted for the controls. However,

amphetamine-type stimulant use disorder was associated with a nega-

tive BAG in the subcortical and cerebellar regional model, suggesting

that the algorithm predicted a younger appearing brain than chrono-

logical age for those with amphetamine-type stimulant use disorder

compared to healthy controls. No significant differences were

observed for cannabis, cocaine and nicotine when compared with

controls. These observations persisted when we ran our sensitivity

analyses for cannabis, cocaine and nicotine and their matched controls

separately.T
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Our findings of higher global BAG in alcohol use disorder are con-

sistent with prior literature on the BAG in alcohol use disorder [8, 11],

and with literature demonstrating the neurotoxic effects of alcohol.

Even moderate alcohol use is associated with decreased brain volume

in early middle age in both males and females [22]. Although the

exact molecular mechanism is not yet known [6], chronic oxidative

stress may play a role [23]. Conversely, the association between

amphetamine-type stimulant use disorder diagnosis and lower BAG

was somewhat unexpected. Methamphetamine use is similarly associ-

ated with neurotoxicity [24]. Indeed, chronic methamphetamine use is

associated with reduced gray matter volume in various brain regions,

including the anterior cingulate cortex, dorsolateral prefrontal cortex,

orbitofrontal cortex, superior temporal cortex and hippocampus [25].

However, this differential impact on predicted brain age may be a

function of the duration of abstinence at the time of the scan, and the

associated differences in the timing and extent of sequelae following

cessation of a particular substance.

Previous investigations of brain age prediction cross-dataset vali-

dation reported MAE ranges of 5.23 to 8.98 years [26], our MAE of

7.1 and 8.2 for cases and controls remain within the acceptable range.

Moreover, narrower age ranges in test data were found to have better

performance estimates than test datasets with broader age ranges

[26], although this might be because of predictions being closer to the

mean of the group instead of model performance per se. Furthermore,

the algorithm used in this study used region-based features, and it is

possible that an algorithm using voxel-based features may perform

better [27]. Alternatively, multimodal brain age algorithms may yield

better brain age predictions than single-modality algorithms [28].

However, the Kaufmann model used in this study still demonstrates

reasonable accuracy across different datasets [29, 30]. Last, the

known regression bias [4, 31] in brain age estimates whereby brain

age in younger individuals tends to be over-estimated, and under-

estimated in older individuals, is present in this analysis. Although bias

corrections can be done in both training and test datasets, these

methods come with additional constraints [26]. Although age was sig-

nificantly different among cases and controls in the total group, this is

likely a function of the large sample size rather than being clinically

significant. Given our sub-group sample size and systematic age

differences between substance use disorder groups, we elected not to

use bias correction beyond including age and age squared in all of the

models and excluding participants younger than 20 and older than 65.

We also included a sensitivity analysis by running separate global

BAG models for each substance use disorder group and their age- and

sex-matched healthy controls, and these bore out the findings from

the global BAG model, which included the total sample stratified by

substance use disorder and healthy controls.

Several limitations deserve emphasis. First, the performance of

the Kaufmann algorithm in this dataset was moderate, due perhaps

largely to scanner and sequence differences between the training and

the present test dataset. Although it is also possible that a voxelwise

gray matter volume feature-based algorithm may perform better, the

additional constraints present in this dataset may override any gains

from using an alternative algorithm. Second, the larger MAE for the

regional models tempers the interpretation of these findings, but is

likely a function of the smaller number of available features

(i.e. information) for these models compared to the global model. The

regional findings should, therefore, be considered particularly prelimi-

nary. Third, the amphetamine-type stimulants group in particular was

smaller than the other groups, therefore, we cannot exclude a type II

error. However, these findings persisted when we ran the global BAG

model for amphetamine-type stimulant disorder and matched healthy

controls only. Fourth, the different datasets included in this study

used a variety of diagnostic and screening measures to classify indi-

viduals as having a substance use disorder, therefore, it is likely that

F I GU R E 3 Boxplot series of regional brain age gap (BAG).
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this variation affected our results. Nevertheless, the demonstrated

group differences observed despite this variation support the argu-

ment of an underlying neurobiological effect of substance use disor-

ders independent of the type of substance used. Fifth, the incomplete

accounting for polysubstance use should also be acknowledged as a

limitation. Last, the incomplete phenotype and substance use behavior

data relating to substance use behavior limited our investigation.

Future studies should recruit more participants from the upper and

lower ends of the age range, more detailed substance use behavioral

data and a wider range of substances to ensure better representation.

Our study is the first to investigate the relationship between BAG

and different substance use disorders. Greater global BAG in individ-

uals with alcohol use disorder is consistent with other evidence of the

negative impact of alcohol. However, the small effect sizes and lack of

significant differences observable for cannabis, cocaine and nicotine,

and the unexpected smaller BAG observed in amphetamine-type stim-

ulant use disorder suggests that brain age may be less useful as a bio-

marker of health in the context of substance use disorders compared

to its efficacy in other lifestyle-related risk factors. Nonetheless, stud-

ies should continue to cross-validate brain age prediction algorithms

to further their clinical utility in identifying a standardized brain-based

biomarker of health. Further work is needed to fully delineate the

mechanisms that underpin global and regional BAG patterns in sub-

stance use disorder.
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