

Visually Modelling Data Intensive Web Applications to
Assist End-User Development

Vincenzo Deufemia1, Chris D’Souza2,3, Athula Ginige2
1
University of Salerno

Via Giovanni Paolo II, 132
84084 Fisciano(SA), Italy

+39 089 963346

deufemia@unisa.it

2
University of Western Sydney

Locked Bag 1797
Penrith, NSW 2751, Australia

+61 2 9685 9097

a.ginige@uws.edu.au

3
Australian Catholic University

40 Edward Street
North Sydney, NSW 2060, Australia

+61 2 9739 2553

christopher.d’souza@acu.edu.au

ABSTRACT

Due to problems in correctly understanding user requirements the
Information System (IS) development community have
recognised the need to involve end-users in the development and
maintenance of web applications. End-users perceive web
applications through user interfaces (UIs) and commonly use
sketches of UIs to express their requirements. Thus, it would be
desirable to provide an end-user development methodology
centred on UI modelling techniques. In this paper a visual
modelling approach is presented to empower end-users in
developing data intensive web applications starting from user
interface descriptions. The modelling language follows a holistic
approach by representing both static and behavioural information
of a web application in one visual model. The visual model allows
the specification of the look-and-feel of the application through
mock-ups, and the user interactions through links, annotations,
and widget references. End-users are guided during the modelling
process by providing a summary view to manage the design of
complex applications and a data model view to improve the
quality of the generated applications.

Categories and Subject Descriptors

D.1.7 [Software]: Programming Techniques – Visual

Programming. H.5.2 [Information Interfaces and

Presentation]: User Interfaces – Graphical user interfaces,
Prototyping.

General Terms

Algorithms, Design, Human Factors, Languages.

Keywords

End-User Development (EUD), Human Computer Interaction,
Visual Languages, Web Application Modelling.

1. INTRODUCTION
The growing demand for developing web applications quickly,
coupled with problems in correctly capturing user requirements
have led to the need for involving end-users in the software
development and maintenance process [1]. In recent years end-
users have demonstrated a great interest in developing the web,
especially with social-networking sites, but most of the web pages
they build simply present information. On the other hand, the
development of data-intensive web applications [2], where the
primary goal is to make dynamic data accessible to a variety of
users, requires considerable skill in programming and web
technologies. This is because of the steep learning curve required
to master the tools and methodologies for the design and
development of such systems. Some attempts have been made to
reduce the burden of the developmental process by providing
visual modelling tools. For example WebRatio is a tool for
modelling web applications using a visual modelling language
called WebML [3]. However WebML developers need to have a
thorough knowledge of low-level development details, which is
not intuitive to most end-user developers [4].

End-users perceive web applications through user interfaces (UIs)
and commonly use sketches of UIs to express their requirements
[5]. Thus, they may be empowered by letting them specify the
structure and the behaviour of the application through a
development methodology centred on the modelling of UIs. Such
a methodology should take into account the iterative nature of the
web development process, where the design moves from high-
level descriptions to increasingly specific details [6], and also the
need to manage the frequent changes in the business requirements.
Hence the methodology must support the constant refinement of
the design ideas resulting in the evolution of the application.

Our research is aimed at addressing such problems by providing
end-users with a visual modelling methodology supported by an
effective tool to rapidly generate web applications. The modelling
method should not only be able to unambiguously capture the
complete requirements of users with low technical skills, but must
also support the adaptability and reusability concerns of the users.

This paper discusses a visual modelling approach for empowering
end-users to develop data intensive web applications starting from
user interface descriptions. In particular, the visual model allows
the end-user to define accurate representations of web applications
through the specification of mock-ups by incorporating graphics
and information content, as well as dynamic behaviour. The
dynamic behaviour specification is captured through links and
annotations on the web pages. Moreover, data dependency
notations similar to that used in spreadsheets is exploited for
modelling the relationships between data in user interfaces.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
VINCI '13, August 17-18, 2013, Tianjin, China.
Copyright 2013 ACM 978-1-4503-1988-1/13/08…$15.00.
http://dx.doi.org/10.1145/2493102.2493105

17

In the proposed modelling process, end-user web developers start
to explore the design ideas by expressing visual models close to
the way they perceive the web application. During the modelling
process the end-users are supported by highlighting the
information structures of the web pages and the navigational
relationships between them thereby providing them with a
summary view of the application status. Moreover, they can fix
any inconsistencies in the visual model by validating it against an
automatically generated ER diagram. A textual specification
equivalent of the visual model is used to derive the ER diagram.
The textual language targets designers who are not likely to know
programming and yet need to refine and improve the specification
for customization purpose.

This paper is organized as follows. Section 2 briefly reviews some
existing work on web application modelling. Section 3 describes
the approach for data intensive web applications modelling
together with a motivating scenario. Section 4 discusses the visual
modelling language and the support for the design process.
Section 5 presents the textual language equivalent of the visual
modelling language, and Section 6 highlights the process for
automatically deriving the ER diagrams. Finally, summary and
concluding remarks are included.

2. RELATED WORK
In [7] Valverde and Pastor provide a specification of web
application UI meta-model as a combination of static views and
dynamic views. The static view identifies the fundamental UI
element types in the web application while the dynamic view
identifies the fundamental behavioural changes to the UI due to
user interaction. They use the UI meta-model with the OOWS
modelling method to engineer the web application [8]. Sections
2.1 provide an overview of Valverde and Pastor’s RIA UI meta-
model. Section 2.2 discusses current UI modelling languages,
while Section 2.3 discusses end-user empowerment through end-
user friendly modelling languages.

2.1 UI Meta-Model
In [7] the UI is defined as a composition of widgets. A widget is a
visual component of the UI whose main responsibility is to handle
data and user interactions. A widget is abstracted as an entity with
a set of properties. Five types of widgets are identified based on
their interactive functionality:

Data View Widget: A widget to display data.

Input Widget: A widget to input data.

Navigation Widget: A widget to capture the target from which
the UI is perceived.

Service Widget: This widget initiates the execution of a service
from business logic.

Layout Widget: This widget contains other widgets.

When a user interacts with widgets, events are triggered which
cause reactions on either the same widget or on other widgets [7].
These reactions are in the form of:

Property Change: This reaction results in a change of the UI
properties of any target widget.

Data Request on Demand: This reaction results in a request for
information from the server to a data view widget, if the
information is not already available on the client side.

Functional Invocation: This results when a service widget
triggers an event resulting in a requests-response communication
with the business logic.

Input Validation: This reaction results in a validation of input
data and a message if there is a problem with the input data.

Navigation: The navigation reaction results in changing the point
from which the application’s UI is perceived by the user due to an
event triggered from a navigation widget.

In addition, the dynamic view uses event rules to define reactions
on target widgets for each event from a source widget.

2.2 UI Modelling Languages
UI modelling languages are generally employed to enable
designers to generate UIs from various models such as domain,
presentation and task. The generated UIs can then be customized
by the designer to expedite the UI development.

For example, Teallach is a User Interface Description Language
(UIDL) that enables designers to build a UI from task, domain,
and presentation models at logical and physical levels, and it also
maps the concepts from one model to another [9]. USIXML is
another UIDL that expresses and manipulates UIs at different
levels of abstractions [10]. These levels include Task & Concept
(T&C), abstract UI (AUI), concrete UI (CUI) and Final UI (FUI)
level. The T&C level describes common end-user interaction task
objects in a given domain. The AUI level defines interaction
space objects by grouping task objects according to requirements
but without considering the specificities of concrete layout and
navigational elements. The CUI level defines objects from the
AUI level with layout and navigation specifications but without
considering the platform in which the rendering occurs. The FUI
level defines the CUI objects with respect to a specific computing
platform.

All UIDLs aim to provide designers a mechanism to bridge the
time gap that exists during the user-interface engineering tasks of
design, development, and evaluation. To reduce the time gap,
UIDLs derive the UIs from other models such as the domain
model and the task model. However designing using these models
require a good understanding of the concepts of tasks and or
domain specifications using the intricacies of the modelling
language. Hence they are not intuitive to end-user developers.
End-user developers on the other hand may be empowered by
exploiting their requirements’ expertise through a visual approach
reflecting the way they perceive web applications. That is why
XML or HTML based visual tools such as Balsamiq [11], Azure
or Dreamweaver are popularly used to capture end-user
requirements. However, most of these tools do not generate the
complete application from the UI specifications. That is, though
they are end-user friendly they are not end-user developer
friendly.

A more recent proposal for collecting requirements of Web
applications and managing their evolution is discussed in [12]. It
uses WebSpec, a domain-specific language to capture navigation,
interaction, and UI features in Web applications. WebSpec uses
UI mock-ups to improve the understanding between different
stakeholders and also to reduce the development time. The
language is designed to be intuitive and supporting scalability but
it uses programming language like syntax while visually
expressing the navigation behaviour. Though this is acceptable for
IS professionals it fails to exploit the requirement expertise of
end-user developers.

18

2.3 Empowering End-User Developers

through User Friendly Modelling Language
Ko et al. [1] have observed that there is very little research done
on end-user modelling of requirements and specification for
interactive and web-based applications. Providing natural
language like descriptions of requirements is one approach to
empower end-user developers, where in domain level keywords
are mixed with end-user defined terms in the language [13][14].
In [15], Liang and Ginige define a Smart Business Object
Modelling Language (SBOML) that uses succinct, pseudo-
English sentences to model relations among business objects. For
example, the SBOML statement “in organization, employee has

first name, last name and might have many office (has room

number, building id)” is user-friendly, as it is easily understood by
end-users. SBOML develops a platform specific model of a web
application from the specification and also supports the rendering
of the UI based on default mappings between data elements and
UI elements. Though SBOML is not a end-user UI modelling
language, it demonstrates that web applications can be built by
empowering end-users to exploit their requirements’ expertise.
This indicates that an end-user friendly modelling language must
be intuitive and hide detailed level specifications.

3. A VISUAL MODELLING PROCESS FOR

END-USER DEVELOPMENT OF WEB

APPLICATIONS
End-user developers should be supported with appropriate tools to
capture and model web application requirements efficiently and
effectively. Visual language representations are popularly used
among the End-User Development (EUD) community to lower
end-user barriers in the specification of their needs and knowledge
[16][17]. Lowering the barriers mean users with low IS skills or
experience should be able to develop applications with minimum
time and effort. Further as end-users gain expertise in the
particular domain, a faster way to express the user interface may
be helpful. To this end, an alternative text based modelling
language equivalent to the visual language represents a valid
choice for more expert end-users.

Figure 1 illustrates the proposed web application modelling
process. The main idea is to exploit the mock-up of the user
interface by enriching it with user interaction information to
automatically derive: the data model, the view, and the control
logic of the web application. During developmental process the
visual tool provides a summary graph to highlight the core
informational and navigational structures in the application. The
visual tool also auto generates an ER diagram for validating the
visual model. The ER diagram is obtained from an auto generated
textual UIDL equivalent of the visual model. An end-user
acquires a working prototype by simply sketching the mock-up of
the user interface, and may use the textual model to define
behaviours requiring complex computations. The modelling
process can be separated into three phases: the visual/textual
specification of the web application, the derivation of the domain
knowledge, and the generation of the business logic. In this paper
we focus our attention on the first two phases.

The specification process in Figure 1 starts with the end-user
developer creating the mock-up of the user interface using a GUI
toolkit. The specification includes the graphical layout of the web
pages along with their interaction behaviour (see Section 4.1),
which is then used to derive other models. The output of the
visual specification is an XML document which is used to auto
generate the summary view, the textual UIDL code, and a view
template. The data model (ER diagram) is derived from the UIDL
code. The view template defines concrete details such as the
actual position of widgets in a page along with their styling details
but without the platform specific details. Hence the view template
is the CUI equivalent of the USIXML. On the other hand the
UIDL code is a high-level textual specification encoding the AUI
equivalent information of the visual specification, which can be
refined by expert end-users. Further details of the summary view
are provided in Section 4.2, while Section 5 discusses the UIDL
constructs and Section 6 explains the derivation of the ER
diagram through inference rules. The view templates and the data
model can be used to derive the controller (business) logic of the
application though its discussion is beyond the scope of this
paper. In the following we present a running example that allows
us to better explain the proposed modelling process.

Figure 1. The proposed end-user modelling process.

19

3.1 Running Example
Figure 2 provides an overview of a web application for managing
travel deals. The Travel Deals page contains a Search Deals
container and an Available Deals container. Containers are similar
to layout widgets identified in Valverde and Pastor’s meta-model
of the UI [7]. Further details about the need for containers and the
various types of containers are available in Section 5. Users may
use the search facility on the Travel Deals page to scout for
specific deals. On clicking a Booking button corresponding to a
deal, they are led to the Order Deal page where they can enter
their personal and payment details to make an order. A successful
completion of an order will result in the display of the Booking

Confirmation page. The Login link on the Travel Deals page is
meant for employees of the enterprise for adding various types of
deals by navigating through a Deal Management page. On
clicking a button in the Deal Management page, the Add Travel

Deal page is reached, from where a new travel deal can be added.

Figure 2. An overview of a web application for managing

travel deals.

4. VISUALLY MODELLING WEB

APPLICATIONS
Screen mock-ups are commonly used as prototypes for the user
interface screens of systems to enable end-users to review and
give feedback on the functional requirements of the developing
application. A number of tools are available to support the
creation of interactive mock-ups of web applications, including
Balsamiq [11] and iPlotz. These tools allow end-users to visually
define the layout of the web pages and also to capture some
interaction requirements. However, it is difficult to capture
behavioural information using mock-ups alone, so they are
generally used in conjunction with other models such as user-
stories [18], use-cases [19], or informal annotations [20].

In the context of end-user development, user-stories, use-cases,
and informal annotations are not appropriate to unambiguously
capture the requirements. This is because their informal nature
inhibits the automatic derivation of other models during the
development of the application [21]. On the other hand the visual
model can be enhanced by integrating explicit behavioural
specification within the model itself. This way the visual model
encompasses a holistic approach rather than the amalgamation of
two or more models. For example, if a widget requires a
validation function, the validation specifications are written using
a callout linked to the widget, rather than as a separate model.
This results in a visually intuitive model, which reduces the
cognitive load on end-user developers. Moreover, the information
integrated into the visual model makes it easier to unambiguously
extract the domain knowledge and the related business logic.

Figure 3 depicts the visual model of the web application for
managing travel deals. The model has been created using
Balsamiq, which is a visual tool for the specification of mock-ups
and is available as a web application and also as a desktop
application. It has been selected because it has a rich set of visual
symbols that can be easily extended. Furthermore, it generates
XML-based models of the mock-ups that are platform-
independent making it a suitable visual UIDL. Figure 3 is
discussed in more detail in the next section on the modelling of
the behavioural information using screen mock-ups.

Additionally, end-users need to be guided during the modelling
process. This can be done by providing updated summary graphs
to manage the design of complex applications and also by
providing a data model to validate the visual model. This is
discussed in Sections 4.2 and 4.3, respectively.

Note that we do not discuss the visual modelling aspects of the
structural information because the mock-ups are implicitly
structural in nature.

4.1 MODELLING BEHAVIOURAL

INFORMATION
As discussed in Section 2, Valverde and Pastor’s dynamic model
of the user interface captures five essential aspects of behavioural
information [7]. The following subsections describe how the
behavioural information is incorporated into the visual model.

4.1.1 Navigational Information
The navigation reaction results in changing the point from which
the application’s UI is perceived by the user due to an event
triggered from a navigation widget. This represents a transition
between a navigational widget and a page or a container. For
example, in Figure 3, clicking on login widget on the Travel

Deals page causes the user to navigate to the Login page. This
navigational information is visually modelled using a red arrow
(displayed as dark grey on black and white prints).

4.1.2 Data Request on Demand
The data request on demand reaction is modelled using an
assignment statement ‘=’ in the widget that displays the requested
data. For example, the expression ‘=Deal Details’ on the Travel

Deals page causes a data request from the database storing the
travel deals. In the visual model this is represented by referencing
the data source widget in the expression. In our case the original
source of data is the Deal Details widget in the Add Travel Deal
page. These dependencies are captured using an approach similar
to cell referencing in spreadsheets. Additionally the = expression
notation also supports the evaluation of complex expressions. For
example, the Expiry Time widget on the Travel Deals page is
dependent on the expression involving the Expiry Date that is set
in the Add Travel Deal page and the current time.

4.1.3 Functional Invocations
Functional invocations are triggered by service widgets on the
occurrence of an event. This will invoke the specified functional
action. This is visually captured by a red arrow along with an
optional event and an action. The target of the arrow can either be
the source widget itself or a different widget. If the arrow
connects two different widgets then it also signifies the
incorporation of navigational information. On the other hand, a
self-pointing arrow results in a functional invocation that
populates the widget or changes its properties. For example the
self-pointing arrow on the Country widget in the Order Deal page
causes the same widget to be populated with data. On the other

20

Figure 3. Overview of UI mock-up of a web application for managing travel deals.

hand, the arrow between the Submit button in the Order Deal page
and the Booking Confirmation page models functional cum
navigational information.

An arrow can have two kinds of actions associated with it: those
that refer to local methods and those referring to web service
invocations. The latter are identified by a URL specification
beginning with the keyword WS. For example, the label url in the
self-pointing arrow on the Country widget signifies the invocation
of a web service that retrieves the set of countries to populate the
widget.

On the other hand, clicking the Submit button triggers the
invocation of the local add method. In general the local method
may require one or more arguments denoting the input data and a
target data source against which the input data needs to be
checked. The ‘=>identifier’ notation is used to indicate the target
data source. For example, the search action associated with the
Search button in the Travel Deals page receives three arguments
corresponding to the information in the widgets: Deal Details,
Expiry Date, and Price. These arguments will match against the
target data source indicated by the => notation in the respective
widgets.

4.1.4 Input Validation
The input validation is modelled using the symbolic character ‘?’
followed by a validation rule in the appropriate widget. A set of
default validation rules can be applied for various data types. For
example, the Card Number widget has associated the validation
rule ?(digits) to constrain users to input only digits. The validation
rules can also include simple conditional operators, for example
the expression ?(length>0) associated with the Deal Details
widget in the Travel Deal container indicates that the text should
have at least one character. In addition, validation rules can be
combined with logical operators, for example, ?((digits) and

length=3)) indicates a rule for a text of three digits. Similarly

more complex validation rules can be expressed as pattern
expressions.

4.1.5 Property Changes
Property changes occur as a result of a user generated event or an
external event, such as the automatic page reload. In the first case,
the property changes are modelled as a red arrow between the
source widget triggering the changes, and the target undergoing
the change. The arrow is also annotated with two attributes. The
first, optional, attribute refers to the event causing the property
change, while the latter defines the action to be performed. For
example, the annotated arrow from the Confirm button on the
Order Deal page indicates the action of setting the visible
attribute of the Customer Details container, when the button
triggers an event. In the case of external events, the only
difference is the absence of source widgets. Note that, as for
functional invocations, the arrows used to model property changes
can also embed navigational information.

4.2 Supporting the Modelling Process with

Web Application Summary Graphs
In general a web application consists of many pages with a high
degree of interlinks. Hence for an end-user the design of such an
application can be quite complex. Thus, when a page is being
designed, the end-user developer must be made aware of the
overall context in which it is being designed in relation to the
already designed pages. This can be accomplished by providing a
summary of the current status of the modelled pages in the web
application. The summary should, not only reveal the links
between the modelled pages, but also draw attention to the high-
level informational structures within each page.

A Web Application Summary (WAS) graph has been proposed to
give an overview of the application to end-users. Such a graph is
automatically generated from the visual model and is composed of

21

nodes representing the web pages and arcs representing
navigational links. Moreover a collapsible tree structure is used to
visually represent the high-level information structures in a node.
Such a structure can also highlight potential hierarchies of nested
container widgets within a web page.

Figure 4 depicts the automatically generated WAS graph for the
visual model shown in Figure 3, in which the collapsible tree for
the Order Deal node is illustrated.

Figure 4. The WAS graph highlighting the navigational and

information of the web application modelled in Figure 3.

4.3 Validating the Quality of the Designed

Model with ER Diagrams
End-users may be interested in validating the data model
generated from the visual model of the UI to identify omissions
and/or mistakes. Advanced end-user developers in particular may
use the data model to improve the quality of the visual models,
where a data model represents the domain information of the web
application. Even though end-users do not have the expertise to
design a new data model from scratch, they do have the business
knowledge to verify the presence of inconsistencies in a given
data model. For example, if a data table contains a mix of
attributes related to a Travel Deal entity as well as a Customer
entity then the end-user can rectify such inconsistency by fixing
the visual model. Obviously, we do not expect end-users to fix all
the inconsistencies but the more conspicuous ones can be
managed before the generation of the whole application.
Generally such inconsistencies in the ER diagrams occur as a
result of poor design of the mock-ups.

The data model, which is automatically constructed from the
visual model, is expressed as a conventional Entity-Relationship
(ER) diagram (Figure 9 depicts the diagram generated from the
model in Figure 3). An ER diagram is easy to understand, and is a
commonly adopted technique to communicate conceptual models
between domain experts and IT experts [22].

The process of mapping the visual model into the ER diagram is
driven by rules governing the design of pages as a hierarchical
group of conceptually related widgets. More details of these rules
are given in the following section, while in Section 6 we present
the process for automatically obtaining the ER diagram.

5. TEXTUAL USER INTERFACE

DESCRIPTION LANGUAGE (UIDL)

CONSTRUCTS
The existing UIDLs are mostly XML based languages which are
not end-user developer friendly. A textual UIDL needs to have
simple constructs with no html tags yet it must have the ability to
define basic UI elements using natural language like syntax.
Further the language must have flexibility for extension. Also it

should be easy to map the UIDL code to other models such as the
physical UI model and the domain model.

The textual UIDL has constructs to describe the UI of an
application as a set of pages where a page is made of zero or more
containers. A page itself acts like a default container and is
delimited by [] brackets. A container represents a logical
grouping of widgets and is delimited by { } brackets. A widget is
either a navigation widget or a data widget. Following Valverde
and Pastor’s meta-model of the UI [7], the language uses a
navigation widget to change the target from which the UI is to be
perceived and/or to initiate the execution of a service from the
business logic. Similarly it also uses data widget to represent
either a data view widget or a data input widget. Each widget may
have zero or more properties, which are separated from each other
by commas and delimited by () brackets. A property can either be
keywords or user defined identifiers or constants. Widgets in a
container are separated by commas and containers in a page are
also separated by commas. In this paper keywords of the language
will be denoted by underlined text (on coloured prints they are
also displayed in blue coloured underlined text). Further for
economy of space when some code is intentionally omitted, it will
be denoted by three dots (. . .).

In addition, a data widget property of referencing data in another
widget is captured as a hierarchical path specification in the form:
“widget w in a container c in a page p”. The usage of containers
eases the specification of the organization the UI. Thus each web
page is a container which can encapsulate other containers.

The layout widget identified in Valverde and Pastor’s meta model
is extended to define additional layout widgets in the form of
container constructs of the language:

Unique data widget container. This is a container of one or more
data widgets whose data is treated as unique. Such a container
may be required to uniquely identify a set of similar business
entities. A unique data widget container results in compound
primary key in a database table. For example while ordering a
deal (see Figure 3) a requirement can be to uniquely identify a
customer using the first name, last name and the date of birth. In
the following segment of the UIDL code, firstname, lastname, and
date_of_birth are end-user specified identifiers for widgets that
respectively capture the first name, last name and the date of birth
of a customer.

unique data (

 firstname (string) , lastname (string) ,

 date_of_birth (string ...)

)

Dynamic widget container. This container facilitates the
organisation of a set of dynamically created widgets for
displaying existing data. A widget in a dynamic container can be a
data view widget or a navigation widget. A dynamic widget
container is commonly used to present an entity’s information
using various internet media types. The media type can be a
combination of rich text, image and audio-video information. For
example the Order Details container in the Order Deal page is a
dynamic widget container for presenting order details in textual
form. The corresponding UIDL code can be represented as:

dynamic order_details_container{

 deal_details (string ...),

 expiry_date(string ...),

 price(string...),

 conditions(link ...)

}

22

The source of data for data widgets in a dynamic container can be
a database table or a method call or from a web service. If the data
source is from a database table in the same application it can be
specified through UI widgets. For example additional information
of the deal_details widget in the above code may be specified as
follows:

Deal_details(...default value

 Computationally dependent on

 (page add_travel_deal,

 container travel_deal,

 widget deal_details

)

)

The code segment indicates that the default source in the
deal_details widget is the deal_details widget located in the
add_travel_deal page (see Figure 3). The keywords
“computationally dependent on” indicate that the deal_details
widget will be affected if the detail_details widget in the
add_travel_deal page is changed. For more details on the various
types of dependencies refer to [23]. Alternatively a method call or
web service call may be specified as well. This makes the
language flexible to manage changes in the application
requirements.

For-each widget container. A for-each widget container is a
dynamic widget container with additional information for
displaying repeated sets of dynamic widgets.

For example in Figure 3, the presence of the digit 3 as an
argument of the Available Deals container specifies three sets of
Available Deal containers to be displayed at a time.

for-each 3_available_deals_container{

 dynamic deal_container{

 booking (button ...),

 description(string ...),

 picture(image...),

 expiry_time(string ...)

 }

}

Notice that the previous and the next button in the available_deals
container are not represented in the code though it is shown in the
visual model in Figure 3 because they are implicit to the for-each
container.

Multi-data widget container. This is yet another form of a
dynamic widget container for presenting repetitive information
generally as rows in a HTML table. Each row of the table
represents a repetition of a set of widgets. For example if the list
of available deals in Figure 3 is to be presented as a row of deals,
then the code would be:

multi-data deal_container{

 booking (link ...),

 description(string ...),

 photo(image...),

 expiry_time_countdown_timer(string ...)

}

Grouped-widget container. This is a container for a logical
grouping of widgets. For example the EUD_UIDL for the address
of a customer with respect to Figure 3 can be coded as follows:

address{

 street_number (string),

 street_name (string),

 suburb (string),

 country (string)

}

As indicated earlier the properties of a widget are represented
within () brackets. Some of the other properties are: data type of a
widget, whether it is read only or read write, default value if any,
whether it is to be hidden or not or whether it has computational
dependency on other widgets.

6. DERIVING DATA MODELS FROM

UIDL
The constructs of the UIDL for data widgets can be used to derive
the data model from the end-user UI description code. This
requires identifying whether the data widgets contain data that
needs to be persisted or not. A widget yielding data that needs to
be persisted is hereafter called Database Field Yielding Widget
(DFYW). Derivation of data models from the UIDL involves
overcoming several challenges:

1) identifying the DFYWs,
2) identifying groupings of such data to associate them with a

database table, and
3) finding relationships among groupings to represent the

corresponding database table relationships.

Note that navigation widgets are not DFYWs but they contribute
towards identification of relationships among database tables.
These three points will be discussed in the following sections.

6.1 Identifying a DFYW
A DFYW is a data input widget whose data is required to be
persisted in a database. Such widgets may or may not have default
data values. Normally input widgets are used to capture data that
is required to be stored, although there are few exceptions to this
rule.

With respect to the example illustrated in Figure 3, the following
cases of data input widgets are identified as potential DFYWs:

1) the Search Deals container in the Travel Deals page,
2) the Administrator container in the Login page,
3) the Customer Details and Payment Details containers in the

Order Deal page, and
4) the Travel Deal container in the Add Travel Deal page.

However the data input widgets for the login and the search are
meant to capture temporary data with an intention to cross check
with already existing data in the database. Hence they are not
DFYW candidates. In addition, a data input widget is sometimes
used to receive confirmation from the user before allowing
interaction with the rest of the UI. These confirmation type data
input widgets are also not DFYWs. Similarly data input widgets
for update too are not DFYWs.

The above discussion indicates that Valverde and Pastor’s model
for input widget types need to be extended by four sub-types:

1) cross-checking input widget
2) confirmation input widget
3) updating input widget
4) persistent data input widget

Of the above four input widget types the first three have
dependencies with other widgets while the persistent data input
widgets will have no dependency. The cross-checking or
confirmation or updating type of input widgets has a
computational dependency with other widget(s). That is if the
other widget is either deleted or changed it will affect these
widgets because the data in the other widget(s) is computationally
linked to the data in these widgets. Hence the UIDL code for such
input widget types will have additional properties to indicate
computational dependencies with other widgets. For example the

23

EUD_UIDL code for the Deal Details data input widgets in the
Search Deals container is as follows:

search_deals_container{

 deal_details (..., editable,

 computationally dependent on

 (page add_travel_deal,

 container travel_deal,

 widget deal_details

) ...

}

In this example the editable and computational dependency
property together indicates that it is a cross-checking data input
widget type.

Furthermore, as indicated earlier a DFYW can have default
values, which may be assigned automatically by the system. For
example the Expiry Date widget in the Add Travel Deal page in
Figure 3 may be automatically initialised depending on the date.
The default values of such widgets may also be initialised from
web services or other method calls or other widgets.

In summary, a DFYW is defined as an input widget that is used to
gather persistent data from the user and not as an input widget to
gather data for cross-checks or for confirmations or for updates.

Apart from the above cases that identify whether an input widget
should be considered as a DFYW, additional rules can be
suggested to identify when a data widget should not be considered
DFYW. These include:

1) Data view widgets: A data view widget has a non-editable
property along with references to their data source. A HTML
table is also normally used as data view widget to populate
information from pre-existing sources.

2) Data-Nav widgets: Some widgets behave as data view
widgets as well as navigational widgets. Hereafter these will
be termed data-nav widgets. A data-nav widget is a
navigation widget in which the navigation link label is
dynamically created from pre-existing data source(s). An
example of a data-nav widget list is set of customer links
where each link’s label is the customer’s full name, an
already identified data source. Data-nav widgets behave as
data-view cum navigation widgets and are ignored because
they do not denote new sources of persistent data.

6.2 Identifying groupings of data to be

associated with a database table
The second challenge of identifying the grouping of data to be
associated with a database table can be solved by specifying
related DFYWs in containers. The motivation for using containers
is that they can potentially be associated with a corresponding
database table. For example the grouped widget container
discussed in Section 5, groups all address related widgets in an
address container which can be easily associated with an
Addresses table. This is intuitive to most end-users and this policy
can be further re-iterated through adequate documentation and
training. A container with at least one DFYW is hereafter called
database field yielding container.

Another advantage of using containers to group widgets is that it
allows the names of the widgets to be unique only within a
container. This makes it easy for the end-user developer to specify
the UI without needing to worry about repetitive names of widgets
in the various pages of the UI.

As discussed in Section 5, the notion of containers also enables
the end-user developer to define DFYWs whose values are

required to be unique together but not individually, as in the case
of composite primary keys. Such widgets can be associated with
the “unique” container.

It is possible that a container can contain other containers in a
hierarchy of groupings. For example a web page may have a
container for user registration, which in turn may have a container
for user address. Such hierarchies can help in identification of
table relationships too. However this will be discussed in the next
section.

The notion of containers also makes it easy to define data-nav
widgets within containers since such widgets normally appear as
list of widgets of the same type. For example a dynamic
navigation list of all customers is a group housed in a container.
From the discussion in Section 6.1 it follows that such a group is
to be ignored while identifying database tables from the UI
specification.

The usage of containers makes it easy to formulate rules for the
identification of groups of widgets that need to be ignored during
the derivation of the data model. Applying the concepts discussed
in this section and in Section 6.1, the following observations can
be made while identifying database tables from the mock-up in
Figure 3:

1) The Search Deals container is ignored because all its input
widgets are of cross-checking data input widget types.

2) The Available Deals container is ignored because it is a
dynamic widget container.

3) The Administrator container is ignored because all its input
widgets are of cross-checking input widget types.

4) The Order Details container in the Order Deal page is
ignored because it is a dynamic container.

5) The Unique Details container is considered a composite
primary key of a Customer Details table.

6) The Address container yields an Addresses table.
7) The Payment container yields a Payments table.
8) The Travel Deal container yields a Travel Deals database

table.

6.3 Finding relationships among groups to

represent the corresponding database table

relationships
Database table relationships can be identified either from
transition links (navigation links) between database field yielding
containers or implicitly from nested database field yielding
containers or from the source of the data view widgets in dynamic
containers or from the source of cross-checking data input
widgets. However it is possible that a container may not carry any
data widget. Hence such a container cannot be treated as a source
of a database table. That is, not all containers are sources of
database table relationships. Scenarios a) to g) below describe
some inference rules to identify these relationships.

By default all relationships will be treated as many-to-many
which may be altered by using keywords one-to-many or many-
to-one or one-to-one in the inner container.

a) A dynamic container (or a container with cross-checking data

input widgets) sources data from two or more containers

If the container sources data from two or more containers, it
implicitly indicates a relationship among the source data
containers. For example, the Order Deals container in the
Booking Confirmation page sources the Deal Details from the
Travel Deals container in the Add Travel Deal page and also

24

sources the Payment Details from the Payment Details
container in the Order Deal page. This indicates that there is a
relationship between Payment Details and Travel Details (see
Figure 5).

Figure 5. Relationship between Payments and Travel Deals.

b) A dynamic container (or a container with cross-checking

data input widgets) targets a database field yielding

container (or vice versa)

This case indicates a relationship among the data sources of
the container widgets and the database field yielding
container. In Figure 3, the Order Details container targets the
Customer Details container, which indirectly indicates a
relationship between the Travel Deal and the Customer Deal
containers because the source of the widgets in the Order

Detail container is the Travel Deal container (see Figure 6).

Figure 6. Relationship between Customers and Travel Deals.

c) A database field yielding container includes one or more

database field yielding container

This case indicates that a relationship exists between the two
containers. In Figure 3, the Customer Deal container includes
an Address container and a Unique Details container. Hence a
relationship can be established between a Customer table and
the Addresses table (see Figure 7). The Unique Details
container identifies the composite primary key of the
Customer table.

Figure 7. Relationship between Customers and Addresses.

d) A database field yielding container includes one or more non

database field yielding container (or vice versa)

In such a case if the inner container(s) has no data view
widget or cross-checking data input widget then no
relationship is established, otherwise case b) inference rules
will apply. Similar rules can also be applied for the inverse
case.

e) A non database field yielding container includes one or more

non database field yielding container

The two containers are simply ignored if no data view widget
or cross-checking data input widget exists in them because
they are not database field yielding containers. Otherwise case
b) inference rules will apply.

f) A database field yielding container targets another database

field yielding container

If the target of a navigation widget in a database field yielding
container is itself a database field yielding container then a
relationship can be established from the container
encapsulating the navigation widget. Hence, a relationship is
found between the Customer Deals table and Payments table
(see Figure 8).

Figure 8. Relationship between Customers and Payments.

g) A database field yielding container targets a non database

field yielding container (or vice versa)

If the non database field yielding container has data view
widgets or cross-checking data input widgets then a
relationship is established among the database field yielding
table and the corresponding source tables of the data view
widgets or cross-checking data input widgets. Otherwise the
search is recursively carried in the nested containers (if any)
until a relationship can be established. Similar rules will also
apply for the inverse case.

In summary, the various relationships identified using the above
mentioned inference rules yield the data model in Figure 9.

Figure 9. The final data model.

7. CONCLUSIONS AND FUTURE WORK
This paper introduces a visual modelling approach for
empowering end-users to develop data intensive web applications
starting from user interface descriptions. The modelling language
follows a holistic approach by representing both static and
behavioural information of a web application in one visual model.
End-users are guided during the modelling process by providing a
summary view to manage the design of complex applications and
a data model view to improve the quality of the generated
applications. The proposed approach also supports advanced end-
user developers through an automatically created textual model
equivalent of the visual model without using HTML or
technological terms. A running example illustrates how a data
model can also be derived from the textual model. The modelling
approach is grounded in existing UI models. The modelling
notations and the inference rules specified in this paper have been

25

implemented and the working prototype successfully produces
SBOML statements representing the data models using the visual
model as an input.

In the future we plan to improve the visual model with error
feedback, user suggestion, and auto-completion mechanisms to
guide the end-user during the development process by using
visual language compilers [24]. We also intend to improve the
layout of the generated pages by inferring the relationships
between widgets through the analysis of user interactions [25].

8. REFERENCES
[1] Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A.,

Burnett, M., Erwig, M., Scaffidi, C., Lawrance, J.,
Lieberman, H., Myers, B., Rosson, M. B., Rothermel, G.,
Shaw, M., and Wiedenbeck, S. 2011. The state of the art in
end-user software engineering. ACM Comput. Surv. 43, 3,
Article 21 (April 2011), 44 pages.

[2] Ceri, S., Fraternali, P., Paraboschi, S. 1999. Design
principles for data-intensive Web sites. SIGMOD Rec. 28, 1,
84-89.

[3] Ceri, S., Daniel, F., Matera, M., and Facca, F.M. 2007.
Model-driven development of context-aware web
applications. ACM Trans. Internet Technol. 7, 1, Article 2.

[4] Fogli, D. and Parasiliti Provenza, L. 2011. End-user
development of e-government services through meta-
modeling. In Proc. of 3rd International Symposium End-

User Development. IS-EUD 2011. LNCS, 6654, Springer-
Verlag, Berlin, Heidelberg, 107-122.

[5] Escalona, M. J. and Koch, N. 2004. Requirements
engineering for web applications – A comparative study,
Journal of Web Engineering 2, 3, 193-212.

[6] Newman, M.W., and Landay, J. A. 2000. Sitemaps,
storyboards, and specifications: a sketch of Web site design
practice. In Proc. of the 3rd Conference on Designing

Interactive Systems. ACM, New York, NY, USA, 263-274.

[7] Valverde, F. and Pastor, O. 2009. Facing the technological
challenges of web 2.0: A RIA model-driven engineering
approach. In Proc. of the 10th International Conference on

Web Information Systems Engineering. WISE '09. Springer-
Verlag, Berlin, Heidelberg, 131-144.

[8] Valderas P., Pelechano V., and Pastor, O. 2007. A
transformational approach to produce Web applications
prototypes from a Web requirements model. International

Journal of Web Engineering and Technology 3, 1, 4–42.

[9] Griffiths, T., Barclay, P.J., Paton, N.W., Mc Kirdy, J.,
Kennedy, J., Gray, P.D., Cooper, R., Goble, C.A. and da
Silva, P.P. 2001. Teallach: a model-based user interface
development environment for object databases. Interacting

with Computers, 14, 31-68.

[10] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L.
and López-Jaquero, V. 2005. USIXML: A language
supporting multi-path development of user interfaces
engineering human computer interaction and interactive
systems. In Engineering Human Computer Interaction and

Interactive Systems. Springer-Verlag, Berlin, 200-220.

[11] Balsamiq, http://www.balsamiq.com/, last accessed June
15th, 2013.

[12] Luna, E. R., Rossi, G., and Garrigós, I. 2011. WebSpec: a
visual language for specifying interaction and navigation
requirements in web applications. Requirements Engineering
16, 4, 297-321.

[13] Little, G. and Miller, R.C. 2006. Translating keyword
commands into executable code. In Proceedings of ACM

Symposium on User Interface Software and Technology.
UIST’06. ACM, New York, NY, USA, 135-144.

[14] Liu, H. and Lieberman, H. 2005. Programmatic semantics for
natural language interfaces. In Proceedings of ACM

Conference on Human Factors in Computing. CHI’05.
ACM, New York, NY, USA, 1597-1600.

[15] Liang, X.D. and Ginige, A. 2007. Enabling an end-user
driven approach for managing evolving user interfaces in
business web applications: a web application architecture
using smart business object. In Proc. of International

Conference on Software and Data Tech. SciTePress, 70-78.

[16] Neumann, C., Metoyer, R. A., Burnett, M. 2009. End-user
strategy programming. J. Vis. Lang. Comput. 20, 1, 16-29.

[17] Pérez, F., Valderas, P., and Fons, J. 2011. Towards the
involvement of end-users within model-driven development.
In Proc. of the Third international conference on End-user

development. IS-EUD'11. LNCS, 6654, Springer-Verlag,
Berlin, Heidelberg, 258-263.

[18] Cohn, M. 2004. User Stories Applied: for Agile Software

Development. AddisonWesley.

[19] Homrighausen, A., Six, H., and Winter, M. 2002. Round-trip
prototyping based on integrated functional and user interface
requirements specifications. Requir. Engineering 7, 1, 34-45.

[20] Moore, J. M. 2003. Communicating requirements using end-
user GUI constructions with argumentation. In Proc. of

International Conference on Automated Software

Engineering. ASE’03. IEEE CS Press, 360-363.

[21] Giese, M. and Heldal, R. 2004. From informal to formal
specifications in UML. In Proc. of the 7th International

Conference Unified Modelling Language. UML’04. LNCS,
3273, Springer-Verlag, Berlin, Heidelberg, 197-211.

[22] Casati, F., Daniel, F., De Angeli, A., Imran, M. Soi, S.,
Wilkinson, C. R., Marchese, M. 2012. Developing mashup
tools for end-users: on the importance of the application
domain. International Journal of Next-Generation

Computing 3, 2.

[23] D'Souza, C., Ginige, A., Liang, X. 2012. End-user friendly
UI modelling language for creation and supporting evolution
of RIA. In Proc. of the 7th International Conference on

Software Paradigm Trends. SciTePress, 190-198.

[24] Costagliola, G., Deufemia, V., Risi, M. 2005. Sketch
grammars: A formalism for describing and recognizing
diagrammatic sketch languages. In Proc. of 8th International

Conference on Document Analysis and Recognition.
ICDAR’05. IEEE CS Press, 1226-1230.

[25] Deufemia, V., Giordano, M., Polese, G., Simonetti, L. M.
2013. Exploiting interaction features in user intent
understanding. In Proc. of the 15th International Asia-

Pacific Web Conference. APWeb’13. LNCS, 7808, Springer-
Verlag, Berlin, Heidelberg, 506-517.

26

