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Twelve students across Grades 2 to 6 were interviewed individually using a range of tasks,

where the mathematical focus was a conceptual understanding of fractions. Careful

listening established that despite giving a correct answer and appearing to have conceptual

understanding, further probing sometimes revealed that the child had only a faulty

procedural understanding. Similarly, success on one task did not guarantee success on a

different but related task. Conversely, a task involving a continuous quantity enabled a 

child to move between discrete and continuous interpretations of fractional parts. This

study supported the claimed advantages of one-to-one interviews over pen and paper tests,

but also highlighted the importance of careful listening and the need for multiple tasks in

the one mathematical domain in eliciting understanding.

The structured interview provides an opportunity to listen closely to children’s 

explanations of their mathematical understandings. In the present study, a child 

successfully completed a reversibility task, finding the whole when given a fractional part, 

by stating that given the three frogs in the picture in front of her, and seeing that they were 

three quarters of the frogs in the pond (the others being underwater), then there were four

frogs in the pond altogether. Her understanding, however, was much more complex than 

her straightforward explanation conveyed. She added, as an afterthought while answering a 

different question, “oh with the frogs right, if they’re the same weight, length, height, 

everything, and then I draw a little frog, it’s not a quarter.”

This observation demonstrated that not only was her part whole knowledge of fractions 

stable but also that she had made connections to the measurement domain, in order to 

allude to the fact that rational numbers could involve more than a discrete whole number

count. While three quarters could mean three out of four discrete items, in this case, frogs, 

three quarters could also mean a part of a whole that had continuous attributes like weight 

and length and height. This comment, an afterthought, was made possible by the one-to-

one setting of a fraction interview, and the opportunity to respond to a range of tasks 

addressing similar content. 

Research has indicated that fractions as rational numbers are more than just shorthand 

for a part whole relationship based on equal parts. Rational numbers encompass the 

subconstructs: decimals, equivalent fractions, ratio numbers, multiplicative operators,

quotients, and measures or points on a number line (Kieren, 1976). With minor variations 

these are the terms used by subsequent researchers in the field of rational numbers (see, 

e.g., Behr, Post, Harel, & Lesh, 1993; Lamon, 1999; Pearn, 1996; Sowder, Bezuk, & 

Sowder, 1993). Others move beyond these subconstructs and re-position rational numbers

as a subconstruct of the larger concept of proportional or multiplicative structures (Lamon, 

1999; Vergnaud, 1988). 

Kieren observed that children could perform computations involving fractions and use 

whole number knowledge without developing “concepts of part-whole relationships or 

proportionality” (p. 107). This is an example of instrumental understanding as opposed to 

relational understanding (Skemp, 1976). These terms can be mapped seamlessly onto the 

367



more widely used, procedural understanding and conceptual understanding. Skemp uses 

the example of the “turn it upside down and multiply” procedure for division by a fraction,

which leads children to solve problems correctly, but leaves them with little if any 

conceptual understanding about what they have done. An example of a strategy based on 

conceptual understanding is the “residual” strategy used to compare two fractions such as 

7/8 and 5/6. As both are only one “piece” away from a whole and eighths are smaller than 

sixths, 7/8 is closer to one (Post & Cramer, 2002). One procedural approach would be to 

turn both fractions into forty-eighths and compare numerators.

Conceptual understanding is sometimes equated with “concept stability,” a term used

by the researchers in the Rational Number Project. The ability of the child to reconstruct

the unit when given a part, is an indicator of concept stability of a part whole 

understanding of fractions(Cramer, Behr, Post, & Lesh, 1997; Post, Cramer, Behr, Lesh, & 

Harel, 1993). 

Whole number counting is by definition discrete, even when counting sets of objects 

such as baskets of eggs, because the attribute being measured is “oneness,” regardless of 

other attributes such as size or length or weight. Rational numbers, on the other hand can 

be broken into infinitely smaller and smaller iterating units. So just like days can be broken 

into hours or minutes or seconds or micro seconds as the occasion warrants, so too can the 

concept of fraction density be applied to find an infinite number of fractions between two 

rational numbers.

Whole number procedures are often used when teaching fractions. Many children are 

introduced to fractions by being shown a set of elements, for example a rectangle divided

into three equal pieces, some of which are shaded and told to count. The cardinal number

of the count of shaded objects is the numerator, while the cardinal number of the count of 

shaded and unshaded elements becomes the denominator. And thus fractions become tied 

to counting and matching (Carrahar, 1996). 

It is when children are asked to find the unit that they, drilled to look for the number of 

parts first, show up the weakness of procedural understanding. Children need to look for

the unit first (Lamon, 1999). This process is called unitizing. A unit may be composed of 

many elements. Egg cartons (full) are an example where the child might count four of them

but are counting 4[12 units]. If we move away from egg cartons and to a quantity that is

not physically grouped but mentally grouped, we can re-unitise. This is an important

strategy (Behr et al., 1993; Carpenter, Fennema, & Romberg, 1993; Sowder & Philipp, 

1999).

The Present Study 

The purpose of the study was to assemble a collection of informative tasks to be used

in a one-to-one interview. Further research is intended to trial these tasks in order to 

elaborate a hypothetical learning trajectory (see, e.g., Simon, 1995) or growth points (see, 

e.g., Clarke, 2001) for developing fraction understanding. This paper focuses on using the 

explanations three children gave to five key questions and identifies whether they had 

conceptual or procedural knowledge of the fraction task.

The participants were 12 children from a low socio-economic, co-educational state

primary school in suburban Melbourne. The students included two from Grade 2, seven 

from Grade 5 and three from Grade 6. Information letters and consent forms were sent 

home to approximately 30 students and all children whose parents returned consent forms 

were interviewed at the end of the school year. Each child was interviewed for around 45 
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minutes and the interview taped and transcribed. The children were not asked the same

questions as there were 55 questions trialled.

The children were not told whether they were correct or incorrect with their initial 

answer, and were always asked to explain their reasoning. Some gave a correct answer but 

demonstrated faulty reasoning and so were deemed to have not successfully answered the 

question. Some initially gave an incorrect answer but subsequently self corrected while

they were explaining their reasoning on the task. They were deemed to have completed the 

task successfully. 

Many tasks in the original interview were gathered from the research literature or

adapted from tasks contained in teacher reference books. They were collected in order to 

represent types of fractional understandings that had emerged from the literature, for

example,

� part-whole, equivalence, decimal, ratio, quotient and operator understandings of 

fractions;

� discrete and continuous cases;

� unit and non-unit fractions; 

� pictorial, concrete, regional area, numerical, story or verbal representations; 

� perceptual distracters, unknown units, the need to re-unitize and reversibility in 

relation to the unit; and 

� comparison problems using the same numerator, denominator, residual strategies or 

benchmarking.

Task 1 was chosen in order to assess concept stability of a part whole understanding of the 

complement fractions one quarter/three quarters using reversibility (Herscovics, 1996; 

Steffe & Olive, 2002).

Show child card with three frogs. 

These are some of the frogs in a pond, but we can’t see them all because some are

underwater. This is three quarters of the frogs in a pond, how many frogs are there 

altogether? Please explain.

Task 2 was a based on a fraction density question developed by Sullivan and Lilburn 

(1997).

a) Please tell me a fraction that is really close to 1.

Prompt for closer number until fraction is smaller than 1/10
th

 away from 1. 

 If answer to (a) is less than one, ask part (b)

b) Can you think of a fraction that is really close to one but is bigger than one?

How did you work that out?
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Task 3 was similar to task two in that the conceptual understanding of 3/4 could be part-

whole or as an operator. 

a) Place 24 plastic teddies on the table.

Here are 24 teddies, Please show me 3/4 of 24. 

If incorrect and not modelled ask part (b):

b) Could you use the teddies to help you work that out?

If incorrect to (a) or (b) ask part (c):

c) Please show me 1/4 of 24. 

Task 4 was a task that was discussed in different research studies and national assessments

(Cramer et al., 1997; Kieren, 1988; Post, 1989; Wearne & Hiebert, 1988) 

Show child fraction equation cards one at a time. 

I want you to estimate the answer to these problems. You don’t have to work out the 

answer exactly, just tell me the closest whole number. So your answer can be 0 or 1 or 2 or 

5 or 20, any whole number. Round about what is the answer to this?

How did you work that out?

13

12

8

7
=

12

5

8

3

Results and Discussion 

In Task 1, Christy, a Grade 5 child answered “four” when asked for how many frogs

altogether after being shown three frogs and told that they were three quarters if the frogs

in a pond. When asked to explain, she added that “because when you said there were three 

quarters I thought of a circle, three quarters coloured in, so four.” Christy moved 

seamlessly between a discrete model, frogs in a pond, and a continuous model, a regional 

area representation.  When she answered the next question, Task 2, however, the breadth of 

her conceptual understanding about Task 1 was revealed. In order to describe a fraction 

close to one she drew a diagram of a circle divided into eighths and then added an inner 

concentric circle. This observation of non-congruent parts appeared to prompt her to add a 

comment about Task 1, “oh, with the frogs right, if they’re the same weight, length, height, 

everything, and then I draw a little frog, it’s not a quarter.”

She used the conceptual understanding that the fractional parts must be the same in a

designated attribute, and in Task 2 this attribute was area. In order to explain that her 

regional area model for Task 2 needed to have equivalent but not necessarily congruent 

parts, she was struck by the fact that the frogs in the previous question needed to be 

equivalent too. The revealing thing was that she could move between discrete and 

continuous attributes of the frogs and still hold onto the task of identifying the complement

fraction, three quarters/one quarter. So when is three quarters not three quarters? When the 

last frog is too light, too short or too small.

Jake, another Grade 5 child, used a different approach to the frog task. He quite 

correctly identified that the unit was “four”, “because if it’s three it needs more, it means

it’s not equal, so if I put one more frog there, it will be four, one whole, not three quarters.”
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He had the correct answer and demonstrated conceptual understanding. It was his answer 

to other questions involving three quarters and two thirds that showed he was using a 

counting strategy that worked in Task 1 but one that could not be generalised to other 

tasks.

When asked to draw a circle around two thirds of an array of 15 dots, a task that was 

used in the Rational Number Project (Cramer et al., 1997), Jake drew a line around all but 

the bottom right dot and explained, “because it’s two thirds, not like the whole thing. Two

thirds you need one less so I just left one.” Jake, like Christy, had the picture of the circle 

divided into parts in his mind. His understanding of it was a quite literal part-whole model. 

Two thirds was one piece not shaded in. He had overgeneralised this to apply to sets of

items and had drawn a circle around all but one of the dots, because two thirds was, in 

Jake’s reasoning, the same as one left over. He could not see 2/3 as an operator on the set 

of 15 items, he could only see part whole relationships, and they were based on additive

rather than proportional relationships. 

Jake did not have a conceptual understanding of the fractions 2/3 or 3/4 despite being 

successful at Task 1 where he demonstrated that he knew the complement fractions one 

quarter/three quarters. In fact, his response to Task 3, modelling 3/4 of 24 teddies, showed

that he was in danger of applying a procedure, an unsuccessful algorithm, to a whole class

of questions.  When asked to show three quarters of the twenty four teddies, he showed 23 

teddies and explained that “that means take everyone except left one….because it’s the 

same with two thirds, with three quarters that means there’s three on the top, four on the 

bottom, so you take everything, it’s almost to a whole but it’s not. Take one away from it, 

it’s approximately one. So I took one away to make it three. And that’s four. And if I take 

one away that’s three, four.” Just like 3 frogs were 3/4 of 4, 2/3 of 15 was 14, and 3/4 of 24 

was 23. They were all one less. Not only did he not have conceptual understanding but 

because he used an unsuccessful algorithm, he did not have procedural understanding

either.

He did not have a part-whole conceptual understanding, or an understanding of 2/3 or 

3/4 as operators. He could not re-unitize 1[24 unit] into 4[6units]. He was successful at 

modelling one quarter of 24 by mentally halving, “ there’s twenty four here, half it makes

twelve, halve it again, that makes six.” But he did not see that a ratio relationship should 

exist between the 6 teddies for a quarter and his one teddy for three quarters.

Task 4 shows how carefully the interviewer has to listen to distinguish between a 

correct answer with full conceptual understanding and a correct answer with little 

conceptual understanding and, in this case, faulty procedural knowledge. Maddison, a 

grade 5 child, was asked to estimate the answer to 7/8 + 12/13. This task could be 

characterized as an equivalence problem as the child was being asked to see both 7/8 and 

12/13 as a near equivalence to one. It could also be described as a benchmarking task, with 

the child using 1 as a benchmark and reasoning that a little less than one added to a little

less than one had to be just less than two.

Maddison answered, “two,” the correct answer. Her reasoning appeared modest but

faultless, “I just guessed. That’s seven bits of eight. Twelve bits of thirteen.” This would

seem a successful part-whole approach. Her next comment was strange but seemingly

unrelated to her answer of two, “And I just added eight and thirteen.” Well obviously, she 

didn’t add eight and thirteen and come up with two, so she was scored as correct and asked 

the next question to see if she could use half as a benchmark. Here her answer was 

“twelve”.
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Her reasoning threw light on her cryptic comment in the previous question, “But eight 

and twelve are twenty and the three and the five are covering a bit of it and so I took it 

away.” In other words, adding the numerators and taking away that from the sum of the

denominators was her procedure. If you applied that whole number procedure to the 

previous question she could get an answer of two; 8 + 13, which is what she said she did, 

was 21. 21 – (7 +12) was 2.

 In fact any residual pair of fractions (fractions where the numerator is one less than the

denominator) would give the answer of two using Maddison’s method, so the question 

can’t simply have different fractions. This question has been used as a standardized test. 

Only 25% of 13 year olds, on a multiple-choice test chose correctly the answer 2 (Wearne 

& Hiebert, 1988). If Maddison had been doing this pen and paper test she would have been 

one of the successful 25%, when in fact she had little conceptual understanding of the 

question.

Summary and Implications

In order to continue to refine tasks that may prove useful in establishing fraction 

growth points in later studies, close attention must be paid to the children’s explanations of 

their answers to tasks. It is important that they are not credited with conceptual

understanding when it is unstable, such as Jake’s idea of three quarters being one less that 

any unit. Nor should they be seen as having conceptual understanding because they

produced the correct answer with faulty reasoning, such as in Maddison’s “subtract the

sum of the numerators from the sum of the denominators” counting procedure.

There is no question that well-chosen tasks can elicit informative explanations from

children, giving insight into different aspects of their fraction knowledge. But caution must

be exercised when making generalizations about a child’s conceptual understanding from a 

single task. It would be a mistake to say that Jake understands three quarters, but that 

would be the assumption if he had only been asked the whole from the part, frogs in the 

pond question. 

Conversely, Christy showed that she could move comfortably between a discrete 

model and a continuous model when discussing the frogs in the pond. By listening closely 

to the explanations as well as the answers that children give to structured interviews,

researchers can make more accurate judgments about the extent and interaction of a child’s

whole number knowledge and their rational number knowledge.
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