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Abstract: Clinical prediction models are commonly utilized in clinical practice to screen high-risk pa-
tients. This enables healthcare professionals to initiate interventions aimed at delaying or preventing
adverse medical events. Nevertheless, the majority of these models focus on calculating probabilities
or risk scores for medical events. This information can pose challenges for patients to comprehend,
potentially causing delays in their treatment decision-making process. Our paper presents a statistical
methodology and protocol for the utilization of a Weibull accelerated failure time (AFT) model in
predicting the time until a health-related event occurs. While this prediction technique is widely
employed in engineering reliability studies, it is rarely applied to medical predictions, particularly
in the context of predicting survival time. Furthermore, we offer a practical demonstration of the
implementation of this prediction method using a publicly available dataset.

Keywords: Weibull regression; prediction; survival time

1. Introduction

Clinical prediction models are commonly utilized in clinical practice to screen high-risk
patients. This enables healthcare professionals to initiate interventions aimed at delaying
or preventing adverse medical events. However, in the realm of the medical literature,
most prediction models focus on estimating the probability of an event occurring or a
condition developing over a specified time frame. For instance, there are well-known
models like the Framingham 10-year risk of general cardiovascular disease [1] and FRAX,
a tool for estimating 10-year fracture risk [2]. This information can pose challenges for
patients to comprehend, potentially causing delays in their treatment decision-making
process. In contrast, in engineering reliability research, it is commonplace to employ
Weibull accelerated failure time (AFT) models to predict “time to failure”. This is relevant
in scenarios like determining the lifespan of machinery, identifying when a component
requires replacement, and optimizing maintenance schedules to enhance overall system
reliability [3]. Weibull AFT models also find application in forecasting the shelf life of
perishable goods and warranty periods for products [4,5].

This statistical methodology estimates when an event will occur without being re-
stricted to a predefined time frame (i.e., when a component will need replacement, as
opposed to a 10-year risk of replacement). Additionally, this statistical approach is not lim-
ited to predicting engineering or mechanical events; it may also prove valuable in predicting
medical events such as fractures, myocardial infarctions, and fatalities. In this paper, our
intention is not to develop and present a prediction tool. Instead, we aim to demonstrate
how to utilize the Weibull AFT model and evaluate its accuracy in a medical context.
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2. Weibull Distribution

The Weibull distribution is also referred to as the type III extreme value distribution [6].
This distribution is characterized by three parameters: the location parameter µ, the scale
parameter ρ, and the shape parameter γ. The location parameter µ is typically set as the
minimum value in the distribution. In the context of survival or failure analysis, it is
common to select µ as 0, which results in a two-parameter distribution.

The cumulative distribution function (CDF) for a two-parameter Weibull distributed
random variable is denoted as:

FT(t; ρ, γ) = 1− exp
[
−( t

ρ
)γ

]
(1)

where t ≥ 0, ρ > 0, and γ > 0.
The probability density function (PDF) of the Weibull distribution is given as:

fT(t; ρ, γ) = F
′
(t; ρ, γ) =

γ

ρ
(

t
ρ
)γ−1 exp

[
−( t

ρ
)γ

]
(2)

The survival function of the Weibull distribution is given as:

ST(t) = 1− FT(t) = exp
[
−( t

ρ
)γ

]
(3)

The mean survival time or mean time to failure (MTTF) is given as:

E(T) =
∫ ∞

0
S(t)dt

=
∫ ∞

0
exp

[
−( t

ρ
)γ

]
dt let (

t
ρ
)γ = u⇒ t = ρu

1
γ

=
∫ ∞

0
e−uρ

1
γ

u
1
γ−1du

= ρ
1
γ

Γ(
1
γ
) note

1
γ

Γ(
1
γ
) = Γ(

1
γ
+ 1)

= ρΓ(
1
γ
+ 1) (4)

3. Log-Weibull Distribution

The log-Weibull distribution is also known as the Gumbel distribution, or type I
extreme value distribution [7].

Let us consider a random variable T, which follows a Weibull distribution W(ρ, γ),
and we have a one-to-one transformation Y = log(T) that maps support T = {t|t > 0} to
Y = {y| −∞ < y < ∞}. The inverse of Y is given by:

T = g−1(Y) = eY

The Jacobian is calculated as:

|J| = |dg−1(Y)
dY

| = eY

Using Equation (2), we can derive the PDF of Y:

fY(y) = fT(g−1(y))|J| = γ

ρ
(

ey

ρ
)γ−1 exp

[
−( ey

ρ
)γ

]
ey
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Simplifying further:

fY(y) = γ
eγy

ργ
exp

[
− eγy

ργ

]
= γeγ(y−log ρ) exp

[
−eγ(y−log ρ)

]
Here, we let γ = 1

b and log ρ = a:

fY(y) =
1
b

exp(
y− a

b
) exp

[
− exp(

y− a
b

)

]
where −∞ < y < ∞ (5)

This demonstrates that the log-Weibull distribution corresponds to a Gumbel distribu-
tion G(a, b), where a = log ρ and b = 1

γ .
The CDF FY(y) of the log-Weibull distribution can be derived as:

FY(y) = P(Y ≤ y) = P(log(T) ≤ y) = P(T ≤ ey) = FT(ey)

By Equation (1), we obtain

FY(y) = FT(ey) = 1− exp
[
−( ey

a
)γ

]
= 1− exp

[
− eγy

aγ

]
= 1− exp

[
− eγy

eγ log ρ

]
= 1− exp

[
−eγ(y−log ρ)

]
= 1− exp

[
− exp(

y− a
b

)

]
(6)

where γ = 1
b and log ρ = a

The survival function of SY(y) is given by

SY(y) = 1− FY(y) = exp
[
− exp(

y− a
b

)

]
(7)

The hazard function hY(y) is given by

hY(y) =
fY(y)
SY(y)

=
1
b

exp(
y− a

b
)

These equations provide a comprehensive understanding of the log-Weibull distri-
bution and its relationship to the Gumbel distribution, including its PDF, CDF, survival
function, and hazard function.

4. Weibull AFT Regression Model

In the Weibull AFT regression model, let T represent survival time. Consider a
random sample of size n from a target population. For each subject i(i = 1, 2, . . . , n), we
have observed values of covariates xi1, xi2, . . . , xip and possibly censored survival time ti.
The Weibull AFT model can be expressed as:

log(ti) = β0 + β1xi1 + . . . + βpxip + σεi = x′i β + σεi, i = 1, 2, . . . , n (8)

Here, β = (β0, . . . , βp) represent the regression coefficients of interest, σ is a scale
parameter, and ε1, . . . εn are i.i.d distributed according to a Gumbel distribution with
the PDF

fε(x) = exp(x) exp[− exp(x)] (9)

and the CDF
Fε(x) = 1− exp[− exp(x)] (10)
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It is important to note that this Gumbel distribution corresponds to a G(0, 1) distribu-
tion or a standard Gumbel distribution.

Now, we can derive the PDF of T from Equation (8)

log(T) = x′β + σε

⇒ T = ex′β+σε

⇒ ε = g−1(T) =
log(T)− x′β

σ
(11)

⇒ |J| = |d(g−1(T))
dT

| = 1
σT

(12)

Substituting Equations (11) and (12) into Equation (9), we obtain:

fT(t) = fε(g−1(t))|J| = exp(
log(t)− x′β

σ
) exp

[
− exp(

log(t)− x′β
σ

)

]
1
σt

= (
t

exp(x′β)
)

1
σ exp

[
−( t

exp(x′β)
)

1
σ

]
1
σt

=
1/σ

exp(x′β)
(

t
exp(x′β)

)
1
σ−1 exp

[
−( t

exp(x′β)
)

1
σ

]
(13)

Comparing Equation (13) with Equation (2) and letting γ = 1
σ and ρ = exp(x′β), we can

see T has a Weibull distribution T ∼W(exp(x′β), 1
σ ).

As shown in Equation (3), the survival function of T ∼ W(exp(x′β), 1
σ ) can be writ-

ten as

ST(t) = exp
[
−( t

exp(x′β)
)

1
σ

]
(14)

Referring to Equations (3) and (4), replacing ρ with exp(x′β), and replacing γ with 1
σ , the

expected survival time is given as:

E(T) = exp(x′β)Γ(σ + 1) (15)

Since most statistical software use log(T) to calculate the parameters, let us show the
distribution and characteristics of log(T). Let

Y = log(T) = x′β + σε

⇒ ε = g−1(Y) =
Y− x′β

σ
(16)

⇒ |J| = |d(g−1(Y))
dY

| = 1
σ

(17)

Substituting Equations (16) and (17) into Equation (9), we obtain:

fY(y) = fε(g−1(Y))|J| = 1
σ

exp(
y− x′β

σ
) exp

[
− exp(

y− x′β
σ

)

]
(18)

If we compare Equation (18) to Equation (5), we can see Y (i.e., log(T)) has a G(x′β, σ)
distribution. We can also observe the use of the error term ε, which follows a G(0, 1)
distribution in Equation (8). This is analogous to the error term in a simple linear regression,
which has an N(0, σ2) distribution.

Referring to Equations (13) and (18), we can see that in the Weibull AFT model, T has
a Weibull W(exp(x′β, 1

σ )) distribution, and log(T) has a Gumbel G(x′β, σ) distribution.
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From Equation (7), the survival function of Y (i.e., log(T)) is given as:

SY(y) = exp
[
− exp(

y− x′β
σ

)

]
(19)

and the expectation of Y (i.e log(T)) is calculated as:

E(Y) = x′β− σξ

where ξ ≈ 0.57721 is the Euler–Mascheroni constant.
It is important to note that by Jensen’s inequality, E(log(T)) ≤ log(E(T)) since log(x)

is a concave down function. Therefore, it is not appropriate to use exp(x′β− σξ) to calculate
the expected survival time. Equation (15) provides the correct formula for calculating the
expected survival time.

5. Estimating Weibull AFT Model Parameters

The parameters of the Weibull AFT model can be estimated using the maximum
likelihood method. The likelihood function for the observed log(t) times, y1, y2, ..., yn, is
given by:

L(β, σ; yi) =
n

∏
i=1

[ fY(yi)]
δi [SY(yi)]

1−δi (20)

Here, δi is the event indicator for the ith subject, where δi = 1 if an event has occurred,
and δi = 0 if the event has not occurred. The maximum likelihood estimation (MLE)
involves calculating p + 1 parameters: σ, β1 . . . , βp. Taking the natural logarithm of the
likelihood function allows the use of the Newton–Raphson method to compute these
parameters. Most statistical software packages can perform these calculations.

6. Calculating Expected Survival Time by the Weibull AFT Model

In reliability research, the expected survival time is often referred to as the mean time
to failure (MTTF) or mean time between failures (MTBF) [8].

To predict an individual’s mean survival time ti using the Weibull AFT model, we
first use the MLE method, as described in Equation (20) to calculate the estimates β̂ and σ̂.
Then, by the invariance property of the MLE, we can directly compute the predicted MTTF
using Equation (15):

ti = exp(x′i β̂)Γ(σ̂ + 1)

After calculating the MTTF, we can apply the Delta method to establish a confidence
interval for the MTTF. This method treats the predicted MTTF as a function of β̂ and σ̂. The
standard error of the MTTF can be calculated as:

SE =


 ∂ ˆE(ti)

∂β̂
∂ ˆE(ti)

∂σ̂

t

Σσ̂β̂

 ∂ ˆE(ti)

∂β̂
∂ ˆE(ti)

∂σ̂




1
2

(21)

where Σσ̂β̂ is the variance–covariance matrix of β̂ and σ̂. It can be estimated by the observed
Fisher information of the Weibull AFT model. The (1-α)% confidence interval is given as:

t̂i − z1− α
2
SE < ti < t̂i + z1− α

2
SE (22)

Here, α represents the type I error, and z is the quantile of the standard normal distribution.
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7. Calculating Median Survival Time by the Weibull AFT Model

In survival analysis, another crucial statistic is the median survival time or percentile
survival time. The pth percentile of the survival time can be computed from the survival
function. For an individual i, the pth percentile of survival time is determined by:

ST(ti(p)) =
100− p

100

For the Weibull AFT model, Equation (14) is used to calculate the pth percentile
survival time for an individual i:

ST(ti) = exp
[
−( ti

exp(x′β)
)

1
σ

]
=

100− p
100

This leads to the following expression for the estimated pth percentile survival time after
obtaining β̂ and σ̂ using the MLE method:

ti =

[
− log(

100− p
100

)

]σ

exp(x′i β)

The calculation of the median survival time corresponds to p = 50, which can be
specifically determined as:

ti(50) = (log 2)σ̂ exp(x′i β̂) (23)

Similarly, we can use the Delta method to calculate the standard error of the predicted
pth survival time when p is fixed, following the approach detailed in Equations (21) and (22).

8. Minimum Prediction Error Survival Time (MPET)

Both mean and median survival time estimates can be biased when a small sample
is used, especially in models that incorporate censoring [8]. Henderson et al. proposed a
method to find the optimum prediction time with the minimum prediction error [9]. They
suggested that if an observed survival time t falls in the interval p

k < t < kp where p is the
predicted survival time and k > 1, then the prediction should be considered accurate. The
probability of prediction error Ek conditional on the predicted time p is given by:

P(Ek|p) = P(T < p/k) + P(T > kp)

This probability can be expressed as:

fT(p/k) = k2 f (kp) (24)

The probability of prediction error P(Ek|p) achieves the minimum value.
Now, let us calculate the minimum prediction error for the Weibull AFT model.

Referring to Equation (13), we have:

fT(p/k) =
1/σ

exp(x′β)
(

p/k
exp(x′β)

)
1
σ−1 exp

[
−( p/k

exp(x′β)
)

1
σ

]
k2 fT(kp) = k2 1/σ

exp(x′β)
(

kp
exp(x′β)

)
1
σ−1 exp

[
−( kp

exp(x′β)
)

1
σ

]
Substituting the above equations into Equation (24) and canceling the common parts,
we obtain:

k1− 1
σ exp

[
−( p/k

exp(x′β)
)

1
σ

]
= k1+ 1

σ exp
[
−( kp

exp(x′β)
)

1
σ

]
We then take the natural logarithm of both sides:
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(1− 1
σ
) log(k)− (

p/k
exp(x′β)

)
1
σ = (1 +

1
σ
) log(k)− (

kp
exp(x′β)

)
1
σ

Rearranging these terms, we can solve for p to calculate the minimum prediction error
survival time:

p =

[
2
σ log(k)

k
1
σ − k−

1
σ

]σ

exp(x′β) (25)

Here, p presents the minimum prediction error survival time. To estimate its standard error,
the Delta method can be employed, and bootstrap methods can also be used to obtain a
confidence interval for the minimum prediction error survival time.

This approach helps to minimize prediction errors and enhance the accuracy of sur-
vival time predictions in the Weibull AFT model, especially when dealing with censored
data and small sample sizes.

9. An Example to Predict the Survival Time

We use a publicly available larynx cancer dataset to illustrate the process of making
survival time predictions. This dataset consists of records for 90 male larynx cancer patients,
each with five variables: the stage of the disease (stage: 1, 2, 3, 4), the time to death or the
duration of on-study time in months (time), the age at the diagnosis of larynx cancer (age),
the year of diagnosis of larynx cancer (diagyr), and a death indicator (death: 0 = alive,
1 = dead). We added a new variable ID into the dataset and changed the variable name
delta to death. The dataset can be downloaded from https://vincentarelbundock.github.
io/Rdatasets/datasets.html.

The larynx cancer data are structured as follows:

ID stage time age diagyr death
1 1 0.6 77 76 1
2 1 1.3 53 71 1
3 1 2.4 45 71 1
4 1 2.5 57 78 0
5 1 3.2 58 74 1
... ... ... ...

46 2 6.2 74 72 1
47 2 7.0 62 73 1
48 2 7.5 50 73 0
49 2 7.6 53 73 0
50 2 9.3 61 71 0
51 3 0.3 49 72 1
52 3 0.3 71 76 1
... ... ... ...
89 4 3.8 84 74 1
90 4 4.3 48 76 0

We used two predictor variables to make survival time predictions: the stage of the
disease and the age at the diagnosis of larynx cancer. Since the “stage” is a categorical
variable, we created three dummy variables for stages 2, 3, and 4, with stage 1 as the default
reference group. The survival probability of patients at various stages and time intervals
can be observed in the following Kaplan–Meier plot (Figure 1):

https://vincentarelbundock.github.io/Rdatasets/datasets.html
https://vincentarelbundock.github.io/Rdatasets/datasets.html
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Figure 1. Kaplan–Meier plot of survival probability

The Weibull AFT model can be expressed as follows:

log(T) = β0 + β1 ∗ stage2 + β2 ∗ stage3 + β3 ∗ stage4 + β4 ∗ age + σε ε ∼ G(0, 1)

Most statistical software, such as R, can be used to run the Weibull regression model. In R,
we can use the following code:

library(survival)
larynx<-read.csv("D:/larynx.csv")
wr <- survreg(Surv(time, death) ~ factor(stage) + age,
data = larynx,dist="w")
summary(wr)

The following results were obtained from the model:

Call:
survreg(formula = Surv(time, death) ~ factor(stage) + age, data = larynx,

dist = "w")
Value Std. Error z p

(Intercept) 3.5288 0.9041 3.903 9.50e-05
factor(stage)2 -0.1477 0.4076 -0.362 7.17e-01
factor(stage)3 -0.5866 0.3199 -1.833 6.68e-02
factor(stage)4 -1.5441 0.3633 -4.251 2.13e-05
age -0.0175 0.0128 -1.367 1.72e-01
Log(scale) -0.1223 0.1225 -0.999 3.18e-01
Scale= 0.885
Weibull distribution
Loglik(model)= -141.4 Loglik(intercept only)= -151.1
Chisq= 19.37 on 4 degrees of freedom, p= 0.00066
Number of Newton-Raphson Iterations: 5
n= 90

Suppose we want to predict the survival time for a patient with ID = 46, who is at
larynx cancer stage 2 and is 74 years old. We can use the following equations:

1. To calculate the mean time to failure (MTTF):

MTTF46 = ˆE(t46) = exp(x′i β̂)Γ(σ̂ + 1)

= exp(3.5288− 0.1477 ∗ 1− 0.5866 ∗ 0− 1.5441 ∗ 0− 0.0175 ∗ 74) ∗ Γ(1.885)

= 7.7(months)
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2. To calculate the median survival time:

Median46 = (log 2)σ̂ exp(x′i β̂)

= log(2)0.885exp(3.5288− 0.1477 ∗ 1− 0.5866 ∗ 0− 1.5441 ∗ 0− 0.0175 ∗ 74)

= 5.8 (months)

3. To calculate the minimum prediction error survival time (MPET) using Equation (26)
with a fixed k = 2:

MPET46 =

[
2
σ log(k)

k
1
σ − k−

1
σ

]σ

exp(x′β)

=

[
2
σ log(k)

2
1

0.885 − k−
1

0.885

]0.885

∗ exp(3.5288− 0.1477 ∗ 1− 0.5866 ∗ 0− 1.5441 ∗ 0− 0.0175 ∗ 74)

= 7.4 (months)

It seems that these prediction methods yield results quite close to the real survival
time of patient ID = 46, which was 6.2 months.

10. Calculating the 95% Confidence Interval of the Predicted Time

First, we used Equation (21) to calculate the standard error of the survival time:

SE =


 ∂ ˆE(ti)

∂β̂
∂ ˆE(ti)

∂σ̂

t

Σσ̂β̂

 ∂ ˆE(ti)

∂β̂
∂ ˆE(ti)

∂σ̂




1
2

=


 ∂(log 2)σ̂ exp(x′i β̂)

∂β̂
∂(log 2)σ̂ exp(x′i β̂)

∂σ̂

t

Σσ̂β̂

 ∂(log 2)σ̂ exp(x′i β̂)

∂β̂
∂(log 2)σ̂ exp(x′i β̂)

∂σ̂




1
2

=





(log 2)σ̂ exp(x′ β̂)
(log 2)σ̂ exp(x′ β̂) ∗ stage2
(log 2)σ̂ exp(x′ β̂) ∗ stage3
(log 2)σ̂ exp(x′ β̂) ∗ stage4
(log 2)σ̂ exp(x′ β̂) ∗ age
(log 2)σ̂ log(log 2) exp(x′ β̂)



t

Σσ̂β̂



(log 2)σ̂ exp(x′ β̂)
(log 2)σ̂ exp(x′ β̂) ∗ stage2
(log 2)σ̂ exp(x′ β̂) ∗ stage3
(log 2)σ̂ exp(x′ β̂) ∗ stage4
(log 2)σ̂ exp(x′ β̂) ∗ age
(log 2)σ̂ log(log 2) exp(x′ β̂)





1
2

(26)

The variance–covariance matrix Σσ̂β̂ can be calculated by the observed Fisher information
of the Weibull AFT model. In most statistical software, this variance–covariance matrix can
be computed directly. In R, we used the following R code to obtain the Σσ̂β̂matrix:

wr$var

which produces the following:

(Intercept) stage2 stage3 stage4 age Log(scale)
(Intercept) 0.817 -0.09049 -0.08479 -0.0444 -0.01114 0.02591
stage2 -0.090 0.16611 0.05319 0.0507 0.00057 0.00016
stage3 -0.085 0.05319 0.10237 0.0567 0.00042 -0.00731
stage4 -0.044 0.05068 0.05668 0.1320 -0.00020 -0.01070
age -0.011 0.00057 0.00042 -0.0002 0.00016 -0.00026
Log(scale) 0.026 0.00016 -0.00731 -0.0107 -0.00026 0.01501

Note that in the results above, the last row represents the log(scale), denoted as log(σ̂),
and what we obtained is the covariance of β̂s and log(σ̂). For Σσ̂β̂, we needed to change
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log(σ̂) back to σ̂. Some extra calculations were needed. To make this adjustment, we can
refer to the formulas found on page 401 of John Klein’s book [10]. Our calculations were:

Cov(β0, σ, ) = Cov(β0, elog(σ)) = Cov(β0, log(σ)) ∗ σ = 0.02292735

Cov(β1, σ, ) = Cov(β1, elog(σ)) = Cov(β1, log(σ)) ∗ σ = 0.0001403178

Cov(β2, σ, ) = Cov(β2, elog(σ)) = Cov(β2, log(σ)) ∗ σ− 0.006469443

Cov(β3, σ, ) = Cov(β3, elog(σ)) = Cov(β3, log(σ)) ∗ σ = −0.009470604

Cov(β4, σ, ) = Cov(β4, elog(σ)) = Cov(β4, log(σ)) ∗ σ = −0.0002297781

Cov(σ) = Cov(elog(σ)) = (elog(σ))2Cov(log(σ)) = σ2Var(log(σ)) = 0.0117501

We replaced the last row of our variance–covariance matrix from R with these
six values:

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.817 -0.09049 -0.08479 -0.0444 -0.01114 0.02293
[2,] -0.090 0.16611 0.05319 0.0507 0.00057 0.00014
[3,] -0.085 0.05319 0.10237 0.0567 0.00042 -0.00647
[4,] -0.044 0.05068 0.05668 0.1320 -0.00020 -0.00947
[5,] -0.011 0.00057 0.00042 -0.0002 0.00016 -0.00023
[6,] 0.023 0.00014 -0.00647 -0.0095 -0.00023 0.01175

which is the Σσ̂β̂ matrix needed to calculate the standard error in Equation (26).
If we use SAS software (SAS (SAS Institute Inc., Cary, NC, USA)), we can directly

obtain the variance–covariance matrix of β̂ and σ̂ by using the following statements:

proc lifereg data=larynx order=data COVOUT outest=est;
class stage;
model time*death(0)=stage age/dist=weibull;
run;
proc print data=est;
run;

The column vector on the right side of Σσ̂β̂ in Equation (26) can be calculated as follows:

(log 2)σ̂ exp(x′ β̂)
(log 2)σ̂ exp(x′ β̂) ∗ stage2
(log 2)σ̂ exp(x′ β̂) ∗ stage3
(log 2)σ̂ exp(x′ β̂) ∗ stage4
(log 2)σ̂ exp(x′ β̂) ∗ age
(log 2)σ̂ log(log 2) exp(x′ β̂)



=



(log 2)0.885 exp(3.5288− 0.1477 ∗ 1− 0.5866 ∗ 0− 1.5441 ∗ 0− 0.0175 ∗ 74)
(log 2)0.885 exp(3.5288− 0.1477 ∗ 1− 0.5866 ∗ 0− 1.5441 ∗ 0− 0.0175 ∗ 74) ∗ 1
(log 2)0.885 exp(3.5288− 0.1477 ∗ 1− 0.5866 ∗ 0− 1.5441 ∗ 0− 0.0175 ∗ 74) ∗ 0
(log 2)0.885a exp(3.5288− 0.1477 ∗ 1− 0.5866 ∗ 0− 1.5441 ∗ 0− 0.0175 ∗ 74) ∗ 0
(log 2)0.885 exp(3.5288− 0.1477 ∗ 1− 0.5866 ∗ 0− 1.5441 ∗ 0− 0.0175 ∗ 74) ∗ 74
(log 2)0.885 log log(log 2) exp(3.5288− 0.1477 ∗ 1− 0.5866 ∗ 0− 1.5441 ∗ 0− 0.0175 ∗ 74)



=



5.8383
5.8383

0
0

432.03
−7.7915


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Now, with all the necessary components in place, we can calculate the standard error
of the median survival time:

SE =





5.8383
5.8383

0
0

432.03
−7.7915



t

0.817 −0.0905 −0.0848 −0.0444 −0.0111 0.0229
−0.090 0.1661 0.0532 0.0507 0.00057 0.00014
−0.0859 0.0532 0.1024 0.0567 0.00042 −0.0065
−0.044 0.0507 0.0567 0.1320 −0.00020 −0.0095
−0.011 0.00057 0.0004 −0.00020 0.00016 −0.00023
0.023 0.00014 −0.0065 −0.0095 −0.00023 0.01175





5.8383
5.8383

0
0

432.03
−7.7915





1
2

= 2.156133

This calculation yields a standard error of approximately 2.156133. Consequently, the 95%
confidence interval for the median survival time is given by:

95%CI : (5.83− 1.96 ∗ 2.16 < Median46 < 5.83 + 1.96 ∗ 2.16) = (1.60 to 10.01) months.

which means we are 95% confident that the survival time will be within 1.60 to 10.01 months.
Alternatively, we can employ the built-in R function predict to estimate the median survival
time as follows:

Median46<-predict(wr, newdata=data.frame(stage=2,age=74),type="quantile",
p=0.5,se.fit=TRUE)
Median46

This results in:

$fit
5.838288

$se.fit
2.095133

The standard error differs slightly from our calculations because R uses Greenwood’s
formula to calculate the standard error of the survival function [11].

Note that in R’s built-in predict function for the Weibull AFT model, type = “response”
calculates exp(x′ β̂) without considering Γ(1 + σ̂) and type = “lp” computes x′ β̂ only; thus,
we should not use them to predict MTTF. Additionally, to the best of our knowledge, there
is no available software for calculating the minimum prediction error survival time.

11. Assessing Point Prediction Accuracy

Henderson et al. [9], inspired by Parkes [12], introduced a simple approach to assess
the accuracy of predicted survival times. Let t represent the observed survival time and p
represent the predicted time. If p/k ≤ t ≤ kp, then the point prediction p is considered as
“accurate”, otherwise, it is labeled as “inaccurate”.

Alternatively, Christakis and Lamont proposed a “33 percent rule” to measure accuracy.
In that method, the observed time is divided by the predicted survival time, and a prediction
is considered “accurate” if that quotient falls between 0.67 and 1.33. Values less than 0.67
or greater than 1.33 are categorized as “errors” [13]. That method is essentially equivalent
to setting k = 3 in Parkes’s method. For our accuracy assessment, we chose to use k = 2.
The accuracy rate was defined as the proportion of “accurate” predictions relative to the
total sample size. The results are presented in Table 1.
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Table 1. Prediction results and accuracy (last digit in predicted time: 0, inaccurate; 1, accurate).

ID Stage Age Death Time Median (95% CI) MTTF MPET

1 1 77 1 0.6 6.42 (3.16, 9.68), 0 8.47, 0 8.11, 0
2 1 53 1 1.3 9.77 (4.07, 15.46), 0 12.9, 0 12.34, 0
3 1 45 1 2.4 11.23 (3.07, 19.39), 0 14.84, 0 14.19, 0
4 1 57 0 2.5 9.11 (4.32, 13.89), 0 12.03, 0 11.5, 0
5 1 58 1 3.2 8.95 (4.36, 13.54), 0 11.82, 0 11.3, 0
6 1 51 0 3.2 10.11 (3.88, 16.34), 0 13.36, 0 12.78, 0
7 1 76 1 3.3 6.54 (3.29, 9.78), 1 8.62, 0 8.25, 0
8 1 63 0 3.3 8.2 (4.37, 12.03), 0 10.83, 0 10.36, 0
9 1 43 1 3.5 11.63 (2.72, 20.54), 0 15.36, 0 14.7, 0
10 1 60 1 3.5 8.64 (4.4, 12.89), 0 11.41, 0 10.91, 0
11 1 52 1 4 9.94 (3.98, 15.89), 0 13.13, 0 12.55, 0
12 1 63 1 4 8.2 (4.37, 12.03), 0 10.83, 0 10.36, 0
13 1 86 1 4.3 5.49 (1.96, 9.01), 1 7.24, 1 6.92, 1
14 1 48 0 4.5 10.66 (3.52, 17.79), 0 14.08, 0 13.47, 0
15 1 68 0 4.5 7.52 (4.12, 10.91), 1 9.92, 0 9.49, 0
16 1 81 1 5.3 5.99 (2.63, 9.34), 1 7.9, 1 7.56, 1
17 1 70 0 5.5 7.26 (3.96, 10.56), 1 9.58, 1 9.16, 1
18 1 58 0 5.9 8.95 (4.36, 13.54), 1 11.82, 0 11.3, 1
19 1 47 0 5.9 10.84 (3.38, 18.31), 1 14.33, 0 13.7, 0
20 1 75 1 6 6.65 (3.41, 9.89), 1 8.78, 1 8.39, 1
21 1 77 0 6.1 6.42 (3.16, 9.68), 1 8.47, 1 8.11, 1
22 1 64 0 6.2 8.06 (4.34, 11.77), 1 10.64, 1 10.18, 1
23 1 77 1 6.4 6.42 (3.16, 9.68), 1 8.47, 1 8.11, 1
24 1 67 1 6.5 7.65 (4.19, 11.1), 1 10.1, 1 9.66, 1
25 1 79 0 6.5 6.2 (2.9, 9.5), 1 8.18, 1 7.83, 1
26 1 61 0 6.7 8.49 (4.4, 12.58), 1 11.21, 1 10.73, 1
27 1 66 0 7 7.78 (4.25, 11.31), 1 10.27, 1 9.83, 1
28 1 68 1 7.4 7.52 (4.12, 10.91), 1 9.92, 1 9.49, 1
29 1 73 0 7.4 6.89 (3.65, 10.12), 1 9.09, 1 8.69, 1
30 1 56 0 8.1 9.27 (4.28, 14.26), 1 12.24, 1 11.71, 1
31 1 73 0 8.1 6.89 (3.65, 10.12), 1 9.09, 1 8.69, 1
32 1 58 0 9.6 8.95 (4.36, 13.54), 1 11.82, 1 11.3, 1
33 1 68 0 10.7 7.52 (4.12, 10.91), 1 9.92, 1 9.49, 1
34 2 86 1 0.2 4.73 (0.68, 8.78), 0 6.25, 0 5.97, 0
35 2 64 1 1.8 6.95 (2.37, 11.54), 0 9.18, 0 8.78, 0
36 2 63 1 2 7.07 (2.4, 11.75), 0 9.34, 0 8.93, 0
37 2 71 0 2.2 6.15 (1.96, 10.34), 0 8.12, 0 7.77, 0
38 2 67 0 2.6 6.6 (2.22, 10.97), 0 8.71, 0 8.33, 0
39 2 51 0 3.3 8.72 (2.28, 15.17), 0 11.52, 0 11.02, 0
40 2 70 1 3.6 6.26 (2.03, 10.49), 1 8.26, 0 7.9, 0
41 2 72 0 3.6 6.05 (1.89, 10.2), 1 7.98, 0 7.63, 0
42 2 81 1 4 5.17 (1.13, 9.21), 1 6.82, 1 6.52, 1
43 2 47 0 4.3 9.36 (1.98, 16.73), 0 12.36, 0 11.82, 0
44 2 64 0 4.3 6.95 (2.37, 11.54), 1 9.18, 0 8.78, 0
45 2 66 0 5 6.71 (2.28, 11.15), 1 8.86, 1 8.48, 1
46 2 74 1 6.2 5.84 (1.73, 9.94), 1 7.7, 1 7.37, 1
47 2 62 1 7 7.2 (2.43, 11.97), 1 9.51, 1 9.09, 1
48 2 50 0 7.5 8.88 (2.22, 15.54), 1 11.73, 1 11.22, 1
49 2 53 0 7.6 8.42 (2.38, 14.47), 1 11.13, 1 10.64, 1
50 2 61 0 9.3 7.33 (2.46, 12.2), 1 9.67, 1 9.25, 1
51 3 49 1 0.3 5.83 (2.41, 9.24), 0 7.69, 0 7.36, 0
52 3 71 1 0.3 3.97 (2.19, 5.75), 0 5.24, 0 5.01, 0
53 3 57 1 0.5 5.07 (2.68, 7.45), 0 6.69, 0 6.4, 0
54 3 79 1 0.7 3.45 (1.56, 5.34), 0 4.55, 0 4.35, 0
55 3 82 1 0.8 3.27 (1.32, 5.23), 0 4.32, 0 4.13, 0
56 3 49 1 1 5.83 (2.41, 9.24), 0 7.69, 0 7.36, 0
57 3 60 1 1.3 4.81 (2.68, 6.94), 0 6.35, 0 6.07, 0
58 3 64 1 1.6 4.48 (2.58, 6.39), 0 5.92, 0 5.66, 0
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Table 1. Cont.

ID Stage Age Death Time Median (95% CI) MTTF MPET

59 3 74 1 1.8 3.76 (1.96, 5.56), 0 4.97, 0 4.75, 0
60 3 72 1 1.9 3.9 (2.12, 5.68), 0 5.14, 0 4.92, 0
61 3 53 1 1.9 5.43 (2.6, 8.27), 0 7.17, 0 6.86, 0
62 3 54 1 3.2 5.34 (2.63, 8.05), 1 7.05, 0 6.74, 0
63 3 81 1 3.5 3.33 (1.4, 5.27), 1 4.39, 1 4.2, 1
64 3 52 0 3.7 5.53 (2.56, 8.49), 1 7.3, 1 6.98, 1
65 3 66 0 4.5 4.33 (2.49, 6.17), 1 5.71, 1 5.47, 1
66 3 54 0 4.8 5.34 (2.63, 8.05), 1 7.05, 1 6.74, 1
67 3 63 0 4.8 4.56 (2.61, 6.51), 1 6.02, 1 5.76, 1
68 3 59 1 5 4.89 (2.69, 7.1), 1 6.46, 1 6.18, 1
69 3 49 0 5 5.83 (2.41, 9.24), 1 7.69, 1 7.36, 1
70 3 69 0 5.1 4.11 (2.32, 5.89), 1 5.42, 1 5.19, 1
71 3 70 1 6.3 4.04 (2.26, 5.82), 1 5.33, 1 5.1, 1
72 3 65 1 6.4 4.41 (2.54, 6.27), 1 5.82, 1 5.56, 1
73 3 65 0 6.5 4.41 (2.54, 6.27), 1 5.82, 1 5.56, 1
74 3 68 1 7.8 4.18 (2.38, 5.98), 1 5.52, 1 5.28, 1
75 3 78 0 8 3.51 (1.64, 5.38), 0 4.63, 1 4.43, 1
76 3 69 0 9.3 4.11 (2.32, 5.89), 0 5.42, 1 5.19, 1
77 3 51 0 10.1 5.63 (2.52, 8.73), 1 7.43, 1 7.11, 1
78 4 65 1 0.1 1.69 (0.77, 2.61), 0 2.23, 0 2.14, 0
79 4 71 1 0.3 1.52 (0.7, 2.34), 0 2.01, 0 1.92, 0
80 4 76 1 0.4 1.4 (0.61, 2.18), 0 1.84, 0 1.76, 0
81 4 65 1 0.8 1.69 (0.77, 2.61), 0 2.23, 0 2.14, 0
82 4 78 1 0.8 1.35 (0.56, 2.13), 1 1.78, 0 1.7, 0
83 4 41 1 1 2.57 (0.3, 4.84), 0 3.4, 0 3.25, 0
84 4 68 1 1.5 1.6 (0.74, 2.47), 1 2.12, 1 2.03, 1
85 4 69 1 2 1.58 (0.73, 2.42), 1 2.08, 1 1.99, 1
86 4 62 1 2.3 1.78 (0.78, 2.79), 1 2.35, 1 2.25, 1
87 4 74 0 2.9 1.44 (0.65, 2.24), 0 1.91, 1 1.82, 1
88 4 71 1 3.6 1.52 (0.7, 2.34), 0 2.01, 1 1.92, 1
89 4 84 1 3.8 1.21 (0.42, 2.01), 0 1.6, 0 1.53, 0
90 4 48 0 4.3 2.28 (0.57, 3.99), 1 3.01, 1 2.87, 1
Accuracy 55.6% (50/90) 50% (45/90) 51.1% (46/90)rate (%)

12. Discussion

In this paper, we introduced how to use the Weibull AFT model to predict when
an event will occur. We utilized mean survival time (mean time to failure time, mean
time between failures), median survival time, and minimum prediction error survival
time to make predictions about the time from the baseline to the event. We also assessed
prediction accuracy using Parkes’s method. When we fixed k = 2, the accuracy was 55.6%
for the median, 50% for the MTTF, and 51.1% for the MPET. However, by setting k = 3,
as suggested by Christakis and Lamont, the accuracy rate increased to 77.8%, 66.7%, and
67.8%, respectively. It is worth noting that our sample size was relatively small, and we
only used two predictors. With a larger sample and more predictors, the accuracy rate
could potentially be even higher. If there are many covariates that could be included in
the model, various variable selection methods, such as backward elimination, forward
selection, stepwise selection, and all possible subset selection can be employed. These
methods may incorporate different stopping rules, such as p-values, Akaike information
criterion (AIC), Bayesian information criterion (BIC), and Mallows’s Cp statistic to construct
clinical prediction models [14]. Additionally, in this sample, we did not observe that the
MPET had a significantly better accuracy rate than the median survival time.

Parametric survival models offer advantages in predicting survival time compared
to the semiparametric Cox regression model. The Cox regression model, which can be
specified as Si(t|xi) = S0(t)exp(x′i β), cannot directly predict time. Instead, it requires first
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specifying a certain period of time and then calculates the probability of an event within
that period of time. The lognormal model is an alternative parametric model that can be
employed to fit survival data. However, it comes with a drawback—parametric survival
models, including the lognormal model, necessitate stronger assumptions compared to
semiparametric models. Other models, like the logistic regression model or neural network
models, are typically utilized to model binary events, regardless of when those events
occurred. Poisson regression models can also be applied to model survival data with count
data types (0, 1, 2, 3, and so forth). Nevertheless, similar to the Cox model, a prespecified
period of time is required to calculate the probability of an event. The choice of which
model to use should be guided by the specific questions we aim to address and the type of
available data [15].

Currently, most clinical prediction models calculate a patient’s probability of having
or developing a specific disease or risk scores based on these probabilities [16]. However,
providing a probability can be challenging to understand for the general population, and
probability itself can be defined in various ways [17]. In practice, the time axis remains the
most natural measure for both clinicians and patients. Predicting when an event will occur
can offer a practical and concrete guide to clinicians and healthcare providers for managing
their patients [18]. It can also assist families and patients in making suitable plans for the
remaining lifespan.

In this paper, our intention was not to utilize the publicly available larynx cancer
dataset for the development of an actual prediction tool. Rather, we employed the dataset
to illustrate the application of statistical methods and evaluate point accuracy. Developing a
real prediction tool would require a much larger dataset and rigorous internal and external
validations. Readers interested in the steps to develop such a tool can refer to the book
Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating [19].
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