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Modeling the Phenomenon Versus Modeling the Data Set 

This paper investigates students’ mathematical modeling activity in data-rich 

modeling tasks. It aims at gaining insight into how students develop meaning 

when modeling data-rich situations and the mathematical models produced. A 

tendency to model a particular dataset, rather than the phenomenon that the 

dataset is a particular instance of, has been observed previously. Students  

concentrate on fitting mathematical objects such as functions to data, rather than 

using domain knowledge about the situation being modeled, mapping this to the 

data so as to capture the phenomenon as a whole. In other instances, students find 

functions that simply linearly interpolate the data and do not consider key 

features of the phenomenon, particularly when they have access to technological 

tools. The extent to which students’ reasoning indicated awareness of their taking 

either approach was investigated in a qualitative study with Year 10/11 students. 

How the approach taken affected the processes students engage in whilst 

modeling was also investigated. The paper contributes to our currently limited 

literature on research into this issue and how it affects the outcome of students 

learning to model in classrooms at this level of schooling. 

Keywords: data-rich situations; modeling the dataset; modeling the phenomenon; 

technology use; modeling purpose of use; modeling processes 

Introduction 

Mathematical modeling is clearly part of mathematics and is now recognized as a 

fundamental mathematical practice for all students in many different educational 

jurisdictions worldwide (see e.g. Barquero & Jessen, 2020; National Governors 

Association Center for Best Practices and the Council of Chief State School Officers, 

2010; Villarreal et al., 2018; Vorhölter et al., 2014) and is increasingly seen as 

necessary in mathematics teacher education (e.g. Association of Mathematics Teacher 

Education, 2017; Borromeo Ferri, 2018; Gilbert & Suh, 2021; Villarreal et al., 2018). It 

is essential that teachers are able to select, implement and assess modeling tasks in a 

meaningful manner that is commensurate with the hallmarks of mathematical modeling. 



 
3 

To ensure they can do so, they need to know how students act when working with 

different types of modeling tasks. One such task type is data-rich modeling tasks. 

This paper aims to investigate secondary school students’ mathematical modeling 

activity in data-rich modeling tasks. In particular, it aims at gaining insight into how 

students develop meaning when modeling data-rich situations and the mathematical 

models produced. A tendency to model a particular dataset (e.g. the daylight hours 

forecast for a specific year at a particular location at 30 day intervals), rather than the 

phenomenon (e.g. the daylight hours for that location as they vary over time) for which 

the dataset is an instance, has been observed in the past (Galbraith, 2007) and similarly 

in sports contexts (Riede, 2003). We refer to these two approaches as modeling the 

dataset and modeling the phenomenon, respectively.  

Students, and in some cases their teachers (Riede, 2003), concentrate on fitting 

mathematical objects such as functions to data becoming a slave to the data rather than 

using domain knowledge about the situation being modeled (e.g. year length and timing 

of longest and shortest days of daylight) mapping this to the data so as to capture the 

phenomenon as a whole (Galbraith, 2007). In other instances, students find functions 

that simply linearly interpolate data and do not consider key features of the phenomenon 

(Berry, 2002; Maull & Berry, 2001; Zbiek, 1998) such as performance capacity of 

weight lifters not growing linearly as weight of the lifter increases as it becomes 

increasingly more difficult to perform necessary movements (Riede, 2003). It thus is 

appropriate to ask whether students are aware they are doing this and to investigate the 

effects these different approaches have on the modeling processes such students engage 

in when modeling these situations. This is particularly important in classrooms where 

students are learning to model and develop meta-knowledge about mathematical 

modeling, that is, what, why, when and how they would mathematically model. 
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Mathematical Modeling Activity in Data-Rich Tasks 

Mathematical modeling 

We agree with Caron (2018), who notes that mathematical modeling has to be an aspect 

of mathematical practice, which is an integral part of doing mathematics (see Stillman 

et al., 2020), whether that be as an engineer (Gainsburg, 2013), “a practitioner of 

mathematics, …a mathematician, an economist, a biologist, any citizen, a teacher or a 

student” (Caron, 2018, p. 548). We also conceive of modeling as real-world problem 

solving but acknowledge that it does not have to be. In this conception of mathematical 

modeling, understanding the situation being modeled and implications of the 

mathematical problem solving for it, are of paramount importance to the modeling 

enterprise. 

Mathematical modeling is a process, as many note (e.g. Caron, 2018; Doerr et al., 

2017; Niss et al., 2007; Stohlmann et al., 2016), and can be represented as a cyclic activity 

(Gainsburg, 2013) that is iterative. A representation of this process as it proceeds from a 

messy real-world situation (A) to a series of stages (B-G), which are products of 

intervening actions related to cognitive activities, is presented in Figure 1. The thick 

arrows represent transitions in activity between stages with the articulation of specific 

cognitive activity (1-7) undergone by modelers between stages. These are often referred 

to as the processes of modeling. Such a representation is an idealized and simplified 

version of what occurs during modeling which, in reality, involves much more to-ing and 

fro-ing between stages. The process of mathematical modeling “is driven by 

considerations of both the external world and mathematics. The motivation for what to 

do next is a continuing give-and-take between the two” (Pollak, 1997, p. 101). The double 

headed arrows indicate reflective metacognitive activity that acts on the cognitive 

activities (Krüger et al., 2020; Vorhölter, 2018). This can involve looking forwards or 

backwards with respect to stages in the modeling (Stillman, 2011). The diagram itself can 
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also act as a scaffold for beginning modelers that can be used by teachers during their 

interactions with students and by students themselves to monitor and evaluate their 

progress as was done in the study described here. For both teachers facilitating the 

modeling and the students engaging in the modeling, such diagrams bring “an 

accompanying managerial understanding of when to appropriately use” (Yoon & 

Thompson, 2007, p. 204) particular cognitive activities and helps keep track of progress. 

[INSERT FIGURE 1] 

The mathematical modeling process as a whole builds “a mathematical model 

out of a real-life situation, and [uses] that model to analyze the situation, understand it, 

address an issue, solve a problem, make a decision, etc.” (Caron, 2018, p. 548). 

Furthermore, any decision making is not based on “portraying real-world argumentation 

as a unitary rationalistic phenomenon” (Gainsburg et al., 2016, p. 340) but rather, it is 

discipline or community of practice specific and thus must be related to the expectations 

and norms of the audience or community for whom the modeling was carried out, as 

well as the modeler’s own convincing of self and others in the modeling team, during 

the modeling, that decisions are sound (Gainsburg et al., 2016). A modeling solution 

must be not only mathematically correct and explicable but also practical, giving 

reasonable and desirable answers in the real-world context (Pollak, 1997). 

Empirical Versus Theoretical Modeling  

Mathematical modeling is a complex process and experienced modelers adopt different 

approaches depending on their perception of the real situation presented to them to 

model and the problem posed (Thompson & Yoon, 2007). Purposes of model building 

in such situations include, separately or in combination, measurement, deciding between 

alternatives, replication, prediction, explanation or manipulation (Thompson & Yoon, 

2007). Mathematical modeling can be characterized as empirical modeling or 



 
6 

theoretical modeling (Berry, 2002) although a combination of the two can also be used. 

In an educational context, empirical modeling occurs when models are fitted to data that 

were either given with the problem statement or collected by the modelers; whereas 

theoretical modeling occurs when a model is constructed or developed from a 

theoretical perspective incorporating key features of the situation or phenomenon being 

modeled. In both approaches data can be integral, however, because in theoretical 

modeling data can be used to verify the appropriateness of the model. Empirical 

modeling is employed when the purpose of the modeling is for prediction more so than 

understanding the underlying relationships of the phenomena involved. If the modeling 

is meant to give greater insight into a situation, then theoretical modeling is more 

appropriate. 

Mathematical Modeling Tasks and Approaches in Secondary Schooling 

Bautista et al. (2014) characterize modeling activities or tasks as being on “a continuum 

along ‘theory-driven’ to ‘data-driven’ situations” (p. 9). The tasks discussed in this 

paper are data-rich tasks, which are considered to be towards the data-driven end of the 

continuum but that does not preclude students taking a theoretical approach to solution. 

However, the mathematical, digital display and analysis tools available influence both 

the mathematical structure perceived in a particular real-world situation and how 

mathematizing is attempted (Brown, 2015; Greefrath, 2020; Zbiek & Conner, 2006).  

Zbiek (1998) previously conducted a study with a cohort of 13 prospective 

secondary school mathematics teachers who were novice modelers engaged in a series 

of data-rich, descriptive modeling activities constructing models directly from collected 

or provided data. They had access to curve-fitting software, graphing calculators, and a 

Computer Algebra System (CAS). Zbiek classified the participants’  modeling 

approaches as: (a) Fitted Function Selector (FFS), where a curve fitter was used to 
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generate all the software’s fitted functions for the data and the best goodness of fit 

values was selected as the appropriate model; (b) Potential Function Generator (PFG), 

where a curve fitter was used to generate potential best fitting functions from the 

software’s repertoire of functions but the appropriate model was selected by the match 

between the features of a function and those the modeler perceived as features of the 

real-world situation; (c) ScatterPlot/Graphing Tool (SCT), where scatterplots of the data 

were produced but other functions beyond the tool’s repertoire of prototypical functions 

to fit were graphed, and the model selected by a qualitative judgement of scatterplot fit 

and function characteristics; and (d) Unneeded/Unused Tool (UUT), where the 

modeler’s judgements about relationships between relevant quantities in the situation 

without technological support was integrated with their knowledge of mathematical 

entities such as ratios and functions to construct a model based on a small subset of the 

data. The first three approaches are in the empirical paradigm whilst the last is 

theoretically based and more towards theoretical modeling. According to Zbiek (1998), 

approaches were distinguished by the extent of modelers’ reliance on the tool for model 

choice, the extent modeling was influenced by mathematical accuracy, mathematical 

understanding of relevance and/or real-world considerations. 

The study of functions typically characterizes Year 9 -12 curriculum in many 

countries including Australia, especially in academic pre-tertiary mathematical 

pathways to university (Caron, 2018; Smith & Morgan, 2016). Perceived pressure not to 

take time away from mathematical content to be taught can result in compromises by 

teachers in jurisdictions where mathematical modeling has gained a foothold in 

curriculum documents and assessment requirements (e.g. Victorian Curriculum and 

Assessment Authority [VCAA], 2015). According to Caron (2018), a Canadian tertiary 

mathematics educator, mathematical modeling in the last years of secondary schooling 
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can often be reduced to finding the curve of best fit for a set of data points usually with 

the support of digital tools. This occurs in Australia as well. Such an approach to 

modeling, in Caron’s opinion, limits experience of modeling processes relying on little 

development of understanding of the situation being modeled or gaining a deeper 

understanding of mathematics applied. However, Caron tempers her critique by noting 

the value in “using real life situations with their intrinsic complexity and authentic data” 

(p. 560). Agreeing with Maull and Berry (2001), she implores teachers to move away 

from the empirical paradigm, where manifestations of Zbiek’s (1998) first three 

approaches to modeling using digital tools are likely to occur, to the theoretical 

paradigm. 

What is it then, that students are losing in this approach to data-rich modeling 

tasks and how might teachers counter this? A theoretical modeling approach requires an 

engagement with the underlying phenomenon at the level of understanding of the 

relationships between important variables in a situation. To achieve this, a structuring of 

the messy real-world situation (Figure 1) based on simplifications might allow the 

modelers to gain traction on the situation with the mathematical, representational or 

analysis tools at their disposal. This can involve clarifying and employing physical, 

physiological, or social theories about the phenomenon or phenomena involved (see, 

e.g. Jensen et al., 2017). These can be based on researching the particular domain area 

where the problem resides, recalling experiential knowledge (Caron, 2018) or by 

consulting with experts in the domain (Vos, 2015). Modelers also form one or more 

mental models of the situation (Waisel et al., 2008), which can be refined by reflection 

on technology-generated external visualizations (Brown, 2015) as the modeling 

continues. However, to successfully model a situation there has to be an integration of 

the modeler’s (a) physical/physiological/social theories about the relations between key 
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variables of the phenomenon in the situation (Czocher & Hardison, 2021), and how 

these might change in relation to each other, if this is relevant to the situation being 

modeled; (b) the modeler’s mental models of the situation; and (c) the mathematical 

modeling that the modeler employs. Having experience in being able to bridge gaps 

among these, and being able to successfully integrate all three aspects, is necessary if 

students are to develop a rich meta-knowledge about the modeling process as a whole. 

Teaching practices that lead to the curtailing of the necessity for such integration to 

structure a messy real-world situation will be a poor substitute for modeling in 

secondary classrooms. Using curve-fitting software and/or regression in computers or 

calculators, in a manner that allows modelers to go directly from data to a mathematical 

model, diminishes the modeling experience for them as they are not involved in 

decision making related to the structuring and mathematizing of the situation being 

modeled; that is, the cognitive activities associated with transitions 1 and 2 in Figure 1, 

surrendering these to the technological tools they use. Another consideration, that might 

affect the modeling, is the possibility that some variables in the situation are not just 

controlled by physical/physiological principles; but are subject to human decision 

making related to factors external to the situation necessitating the testing of different 

scenarios, rather than just extrapolating from a best fitting function model. 

In this paper, we seek to identify relationships between students’ perceptions of 

the nature of their modeling approaches, as they work in small teams on data-rich 

modeling tasks, and their cognitive activities that affect their learning of mathematical 

modeling and meta-knowledge about the modeling process in a technology-enabled 

teaching/learning environment. In particular, we attempt to reveal the extent of their 

awareness of their modeling approaches leading to modeling the dataset, or part thereof, 

or modeling of the phenomenon and the perceived, versus actual, generality of their 
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modeling. 

Methods 

To gain insight into this issue, we present a qualitative study where Year 10 and Year 

11 students have been given data-rich modeling tasks in their regular classroom lessons 

as part of the Using Mathematics to Solve Real-World Problems: The Role of Enablers 

Project (DP17010555)1 (Geiger et al., 2018). The research questions we will be 

addressing are:  

RQ1 (a) To what extent does student reasoning indicate awareness of modeling a 

phenomenon, rather than a specific instance of it, when upper secondary 

students (Years 10/11) are presented with data-rich modeling tasks? (b) Does 

access to technological tools influence prevalence of either approach? 

RQ2 How does the approach taken (i.e. modeling the phenomenon or modeling the 

dataset) affect the processes students engage in whilst modeling? 

Participants and Their Backgrounds 

Thirteen students in a Year 10 class from one school, Heathcliff College2, in a one 

semester mathematics elective which had a problem solving and modeling focus and 22 

students in a Year 11 two semester General Mathematics class at another school, 

Earnshaw College, participated. Both schools were Years 7-12 secondary schools 

located in outer and inner metropolitan areas, respectively, of a large Australian city.  

The mathematical background of the Year 10 class included the study of linear 

functions for all students and non-linear functions for some students, plotting a dataset 

 
1This research was supported by the Australian Government through Australian Research 
Council's Discovery Projects funding scheme (DP17010555). The views expressed herein are 
those of the authors, not necessarily those of the Australian Government or Australian Research 
Council. Chief Investigators are V. Geiger, G. Stillman, J. Brown, and P. Galbraith. M. Niss is a 
Partner Investigator. 
2 All names used for schools and students are pseudonyms. 
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and finding a suitable model. The local state curriculum (VCAA, 2016, p. 6) indicates it 

is expected that mathematics lessons will foster “the ability of students to make choices, 

interpret, formulate, model and investigate problem situations, select and use 

technological functions and communicate solutions effectively”.   

In Year 11 and 12, modeling is one of the essential mathematical activities 

described for all mathematics units (VCAA, 2015) including Year 11 General 

Mathematics. Two aims of the senior curriculum show how “worthwhile and 

challenging mathematical learning” (p. 6) is intended to be implemented so that students 

can “apply mathematics to analyze, investigate and model a variety of contexts and 

solve practical and theoretical problems in situations that range from well-defined and 

familiar to open-ended and unfamiliar [aim 2] and use technology effectively as a tool 

for working mathematically [aim 3]” (p. 6). The Year 11 students’ mathematical 

background included linear relations and equations, linear graphs and models, direct, 

inverse and joint variation, investigating relationships in datasets between two 

numerical variables using scatterplots, Pearson’s r and linear regression, and 

interpreting these in context, in addition to their Year 10 background.  

The students also engaged in teacher designed or selected real-world/realistic 

tasks during the semester and two video-recorded modeling sessions within the project. 

At Heathcliff College, these included the Up Task, about the lifting of a house with 

balloons based on the movie Up (Docter, 2009), as an introduction to the modeling 

cycle diagram in Figure 1 and its cognitive activities of modeling, and a version of the 

Filling Up Task (Blum & Leiss, 2006) before implementation of the first researched 

modeling task for this class. A further two data-rich tasks, the first comparing the salary 

spend by American baseball teams and their season wins, and the second comparing the 

careers of National Basketball Association of North America stars, Michael Jordan and 
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Lebron James, were used before the implementation of the second modeling task for 

this class in the project. During a pre-lesson interview, the teacher described these tasks 

as  involving “essentially just two sets of data plotting them against one another, and 

using the data to try and read it with functions on it.” 

The Year 11 students had engaged in only two other real-world open modeling 

tasks, The Million Dollar Robbery as an introduction to modeling and Drought Proofing 

the Farm, both conducted by their teacher. The modeling cycle (see Figure 1) was 

introduced during the introduction to the second task. This task was part of the data 

collection for the larger research project. Neither are data-rich tasks. 

The Tasks 

Two tasks are the focus of this paper. The first, Protective Service Officer (PSO) Task, 

was about height estimation. The other task was related to sport as sport was a major 

interest of many in the class. Key details of the tasks are presented next3. 

PSO Task. The Minister for Police announced the recruitment of extra Protective 

Service Officers to improve public safety, especially during international events, but 

also to improve public confidence in using the transport network. Police Command has 

suggested that the PSO’s are not good at estimating people’s heights but are reasonably 

good estimators of small lengths, and where this is not the case, it can be easily 

remedied. The suggestion is that using a small body part length, easily estimated, a rule 

of thumb could then provide a good height estimate. Your team, as consultant 

mathematical modelers to Police Command, are to compile a report evaluating various 

rules of thumb that PSOs could use to provide a good estimate of height of offenders or 

suspects using shorter lengths. Police Command have provided some sample data. [Data 

 
3 Fuller versions available at www.mathsmodellingenablers.com 



 
13 

supplied: first name, height, shoe length, knee height, wrist to elbow length, face height, 

gender, age, ethnicity for 41 adults aged 20-58, one with missing data.] 

Weightlifting Task (WLT). In Olympic weightlifting one type of lift is the clean 

and jerk where the barbell is first lifted to the shoulders (the clean) and then, in a second 

motion (the jerk), to above the lifter’s head. There are male and female categories and 

then weight classes within, so Women’s 58 kg allows female lifters to compete who are 

up to this weight. Records are kept for each weight class. The world associations of 

weightlifting use a model that is based on the world records from the beginning of one 

Olympic year until the end of the next Olympic year. The International Weightlifting 

Federation (IWF) in 2018 disallowed all previous world records and started afresh. New 

records exist in some but not all categories. Your team, as modelling consultants to the 

IWF, is to provide ‘world standards’ where no record exists using your best models. 

The IWF will only ratify lifts as World Record Lifts that are 1 kg higher than the new 

world standards which also need to be both marketable and achievable.  To increase 

public interest in weightlifting before the Olympics, a World Champion, irrespective 

of gender, will be crowned for different types of lifts by determining the best 

weightlifter across all weight categories. Your team is to argue who should be crowned 

World Champion for Clean and Jerk based on comparing the Actual World Record Lift 

with the predicted Performance Capacity of the lifter and to Rank the top ten for a 

countdown. [Datasets showed current world record lifts for male and female weight 

classes with actual weight of lifter in super heavy class only, record holder’s name and 

country,  date record set as well as current world records for men and women with name 

of record holder and actual competition body weight in all classes.] 

Data Collection 

Data for this paper were collected from implementations of the two modeling tasks. The 

https://en.wikipedia.org/wiki/International_Weightlifting_Federation
https://en.wikipedia.org/wiki/International_Weightlifting_Federation
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PSO Task was used with the Year 10 students as their first video-recorded modeling 

task and with the Year 11 students as their second. The Year 10 students undertook the 

WLT as their second video-recorded task. In both tasks, students were provided with 

data, but could also collect more data themselves (via measurement for PSO Task or 

online for WLT). Students worked on the tasks in teams of two or three. One student 

from Heathcliff College was absent during the second task so there was one fewer team. 

See Table 1 for details of teams and implementations. Teams were either video or audio 

recorded as they engaged in the lessons led by their teacher. 

Data used for analysis to answer the research questions came from scrutinizing the 

lesson implementation video-recordings of selected teams and their transcripts, together 

with transcripts of audio-recordings of the other teams, post lesson focus group 

interviews (of 6-8 students from a mix of teams for each implementation), post lesson 

video stimulated recall interviews with the teams video-recorded during 

implementation, and students’ written reports of their modeling as they worked on the 

modeling tasks. In the stimulated recall interview, team members were asked direct 

questions about whether or not they considered themselves to be modeling the dataset 

given or modeling the phenomenon more generally at particular times during their 

solution, stimulated by short clips of the video-record of their team’s working during 

the lesson. These questions were also posed to members of other teams in the focus 

group interviews. 

Analysis 

As a first pass through the data, the video files were viewed by both researchers, and all 

text data in the form of transcripts from video and audio files and the student written 

modeling reports were read and subject to data filtering by both researchers. Instances 

where the students’ words or actions in images appeared to indicate that they were 



 
15 

modeling the phenomenon, or restricting their approach to part or the whole dataset, or 

collecting data, were selected by each researcher separately. We then cross checked that 

the selected images and passages of text or mathematical working were the same, 

discussing and culling or including until they were.  An interim case summary (Miles et 

al., 2014) was produced for each of the groups and their approach to a specific modeling 

task. These were cross-checked by the researchers individually for completeness and 

ensuring that the context in which the modeling took place was preserved (Richards, 

2005). To conduct thematic analysis, several qualitative, partially ordered meta-matrices 

(Miles et al., 2014) were constructed for data from the two sites. The meta-matrices 

assembled descriptive data from different cases in a standard condensed format (Miles 

et al., 2014) on the basis of inclusion of all relevant data to answer the research question 

in focus. Initially these were quite large “mega-matrices” (Miles & Huberman, 1994) 

but they were gradually refined by the researchers transforming the case-level data into 

short quotations and summarizing phrases and then fracturing and clustering so they 

became more ordered and contained short, category-grounding phrases in each cell. 

This was an iterative process of data condensation and category refinement through a 

series of meta-matrices until emergent themes were distilled through the tactic of 

making comparisons and contrasting (Miles et al., 2014). At this stage of the analysis, 

exemplar cases were selected for the reporting of results. 

Due to space limitations, only selected rows of case-level displays for partially 

ordered meta-matrices related to the first research question are shown from Heathcliff 

College (Table 2a) and Earnshaw College (Table 2b) but this analysis and 

categorization was done across all teams and tasks. As the tables show, the analytical 

categories of interest are the approaches taken by teams during modeling (i.e. modeling 

the dataset or modeling the phenomenon), evidence of awareness of the approach they 
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were taking, the purpose they set for their modeling and the alignment of their personal 

physical theories, mental models or images and their mathematical modeling. 

To understand the possible influence of digital tools (e.g. CAS calculators and 

laptop computers with Excel spreadsheets) on student approaches to the tasks and the 

processes engaged in, all data were coded for how digital technology was used (e.g. to 

make a scatterplot), modeling purpose of use (e.g. to verify mathematical output) using 

Villareal et al. (2018, p. 333) codes, and modeling approaches of  technology use when 

curve-fitting and regression software were available using Zbiek (1998, p. 198) codes. 

Additional codes were added as necessary and all coding was subjected to consensual 

agreement between the two researchers.  

Finally, to complete answering the second research question, partially ordered 

qualitative meta-matrices showing the approach taken (i.e. modeling the dataset or 

modeling the phenomenon), and the modeling processes engaged in by students at the 

two sites were constructed. Each set of data for a group was coded for instances of 

cognitive activities in the transitions in the modeling process shown in Figure 1. Any 

additional cognitive activities related to modeling processes (e.g. identifying variables) 

were also coded. These codes were assigned individually by the researchers and then 

any discrepancies discussed until consensus was reached. See Tables 4a and 4b. 

In the coming sections findings from this analysis will be reported, followed by 

a discussion in light of the literature and the research questions, and then conclusions 

will be drawn and possible implications for teaching and future research will be 

identified. 

Findings 

Selected exemplars from the meta-matrices addressing the themes that were distilled 

from the data related to students’ approaches to the data-rich modeling tasks and their 
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awareness of their approaches are presented to answer RQ1a. Possible influences of the 

availability of digital technology use on the student data-modeling approaches to the 

modeling tasks follow to answer RQ1b. Finally, the modeling processes engaged in by 

students during their modeling of these tasks are presented together with the modelling 

purposes of use of technology from Table 3 to answer RQ2.  

Modeling Part of Dataset not the Phenomenon – fully aware 

If the dataset is perceived to be a set of numerical values where contextual meaning is 

secondary, other purposes than coming to a satisfactory resolution of the real problem 

presented in a modeling situation can be served quite readily. In the WLT, Ned from 

White Team (Heathcliff College) initially explored ratios and then tried to develop a 

linear model by hand. After some difficulty with finding a gradient, he decided 

completing the task with a report in the timeframe was his goal, rather than modeling 

the weightlifting situation in a realistic manner. He was totally aware in the post task 

interview that he was not modeling the phenomenon involved, as this response shows:  

Ned:  I feel like I kind of narrowed myself down, just by viewing it as the whole goal was 

to find these two [world standards needed], because then I wasn’t really having a 

model of humans doing weight lifting, I was just having a model like based on the 

averages of numbers to estimate this number [points to world standard needed], like 

yeah. And that was my mistake. 

Initially, he had expected that there would be a “trend between how much they weigh and 

how much they can lift”. To find this, he suggested to his partner, Joe, using ratios “so it 

is like for each kg they weigh more than 55,…the weight they can lift increases by a set 

amount”. By omitting the last given data point for the superheavy weight lifter, he was 

able to say that for every 6 kg increase in weight, the lifters lift an extra 9.25 kg.  They 

decided to use Excel on a laptop to make a scatterplot and find a linear trendline. Ned 
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then realized he could use his weight lifted to extra weight of the lifter ratio as the gradient 

for his own linear model, but could not find the constant by hand techniques, so finally 

used Joe’s constant from Excel at the teacher’s suggestion. To complete the task with a 

report, Ned decided to continue using ratio calculations on his calculator and Joe would 

use Excel to produce a series of linear models. From this point on, their “modeling” was 

driven by mathematical expediency, as Ned and Joe explained in the post task interview. 

Ned: Obviously there is a limit to what humans can hold, because…if any human can 

carry any weight, then it wouldn’t need robots … But we did understand, and like 

looking at the thing it was, there probably was a limit, and we probably should have 

taken that into account. However, it was the quickest way to have a linear. 

Joe:  I was just thinking like, instead [put] those parts into the Excel thing and then 

formulate like the trend line, and find the equation and stuff…. I guess we didn’t 

really like put in the consideration for like the human limit that much, I think. 

Interviewer: So you really chose it on mathematical grounds and convenience and 

efficiency at the time? 

Joe:  Yeah, pretty much. 

Interviewer: So the actual real world didn’t come a lot into your thinking?  

Joe:  I guess not. 

Interviewer: You weren’t really thinking a lot about weight lifting during it? 

Ned:  Nuh [meaning “no”]. 

In a second example, when again the dataset was perceived to be a set of 

numerical values where contextual meaning was secondary, tensions between flawed 

physical theories of what was occurring in the situation, the modeler’s mental image of 

it, and the results from mathematical working using actual values, was overridden. In 

the WLT, Eric and Ray (Blue team, Heathcliff College) both decided quickly that they 
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should put the data values into a graph and obtain a trend line, as that would mean “you 

can say roughly what it is going to be” (Ray). Eric used a CAS calculator to plot the 

men’s World Record Lifts against weight categories, which they decided looked 

reasonably linear, except for the last point, which was the second highest data pair 

given, as he left out the super heavyweight category. Ray drew a line on the plot of the 

women’s World Record Lifts against weight categories on a spreadsheet screen image 

saying “this one looks pretty much right on the line, yeah.”  For this line, he used a 

point consisting of the mean of the weight categories and the mean of the weight lifted 

(62.3, 140.3), with the point representing the lowest weight category and its 

corresponding World Record Lift (49, 120), to find the gradient and then the linear 

equation using 421/3 = 17/11*187/3 + c. Their model to find missing World Standards 

for Women was y = 17/11x + 44 where y = weight lifted and x = weight class. They then 

decided to use linear models with the super heavy category missing as their first models, 

and the actual weights with all data as a second model, not realizing this was just a 

different data source, not necessarily giving rise to a different mathematical model.  

[INSERT Fig 2] 

When Eric plotted the men’s actual weights with the amount lifted for World 

records on his CAS calculator, it was not linear (see Figure 2a) with Ray commenting 

he didn’t like it. He noted that, “This one almost looks like it is going to be like a 

parabola or something.” Eric saw it as “going to come back around”, but Ray insisted 

“it is not going to start coming down”, suggesting “it is like exponential” and so “turns 

really gradually”, but apart from the last two points, it was “a pretty straight line”. 

After being reminded by their teacher of how they could find the equation and 

look at different graph types to use as models on an Excel spreadsheet, they examined 

the female data on a spreadsheet and various trend line choices, noting that the data plot 



 
20 

“is not linear at all” (Ray), but still chose none. Ray proffered the flawed physical 

theory “if the weight kept going up, like in terms of muscle mass, they will be able to 

keep lifting more and more as well”. For this reason, they were happy with the linear 

model as their first choice and their discarding of the super heavyweight class. Eric even 

suggested it could be “a symbol of underperformance”, that the actual data was so much 

lower than a linear model would predict. Although Ray was willing to consider an 

exponential model, which he then rejected, he insisted a parabola “is definitely not right 

at all,” despite the better visual fit to the points (see Figure 2b).  

As the following exchange shows, there was a mismatch between the boys’ 

mental model of the situation, the physical theories they held about the physiology of 

the situation, and the mathematical object (the parabola) that appeared to be the best 

model: 

Eric:  I mean it doesn’t fit in with like how reasonable it would be. 

Ray:  If you keep on getting like, like if this [the parabola] just goes on, then you get 

like heavier, you get more muscle, you can lift less until it is nothing! 

Eric: That would mean there is a point at which it peaks. 

Ray: Yes, but I doubt it. It just doesn’t seem right. [softly] I don’t like it, it is bad. 

A further exchange with the teacher convinced Eric there might come a point 

where a person had too much muscle, or was too big, and would have difficulty 

standing up, let alone lifting weights. Reluctantly, Ray accepted the quadratic model, 

but said they were only choosing it because it “seems to be more accurate”. Even in the 

follow up interview, Ray said he was not expecting a parabola because “like the way it 

is kind of formatted, it is like you get stronger, as you like gain weight then you get 

stronger; but then you keep getting it [more weight] until you get weaker again. And 

that just didn’t make a lot of sense to me, like in a literal sense.”  



 
21 

This team’s actions do not indicate they were a slave to the data – more there was 

a misalignment between the situation, Eric’s mental model of the situation based on his 

physical theories about human capacity to lift weight in relation to bodyweight, and the 

mathematical objects at his disposal to model the situation. All their actions and 

comments were consistent with modeling the dataset given, although they were willing 

to exclude real data (i.e. the super heavyweight category) that did not fit with the 

physical theories they held, especially Ray’s. 

Modeling Part of Dataset not the Phenomenon – believing model more general  

In the PSO Task, Una and Tegan (Green team, Heathcliff College) constructed the 

model, 6S = H (where S is shoe length, H is a person’s height, both in mm), as a rule of 

thumb to determine height from a small subset (n = 7) of the given dataset (n = 41) from 

the youngest (4 people), middle (2 people) and oldest age groups (1 person), using 

ratios of average height ÷ average shoe length. This meant their sample was mainly 

Caucasian, although Una inspected the data later and declared that there was little 

variation, so they would not need to adjust their model, even if they restricted it to 

female Caucasians. They indicated in the follow up interview that the model applied 

generally to the adult population “because they are people” (Tegan). Una qualified this 

by saying, “Maybe not for children because children are a bit different. The growth rate 

is much different from ours…from adults.” Shoe length had been chosen initially: 

“because shoe length…it’s better to the person’s overall height, like the bigger shoe is 

obviously taller, because you need bigger shoes to help balance the person more as they 

weigh more” (Una). They sifted through the given data, making choices about which 

variables they considered significant, based on their physical theories about growth, 

eliminating face height as irrelevant, but investigating knee height, as it contributed to a 

person’s growth and therefore height. Using ratios of averages again, they constructed 
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the model H = 3 k (where k is knee height, H is a person’s height, both in mm). From a 

trial of 5 people’s heights from the dataset, they concluded that use of shoe length was 

the better estimate. 

Modeling the Phenomenon –Believing Model More General 

In this case, the modeler believed that the model being constructed applied generally. In 

the WLT, for example, Evan from Red team at Heathcliff College believed that the model 

being constructed applied to the phenomenon of human capacity to lift weight depending 

on bodyweight, rather than the phenomenon of weight lifters’ capacity to lift weight 

relative to their bodyweight in Olympic competition. He therefore neglected the effects 

of human decision making about qualifying benchmarks to be able to participate in the 

competition, ensuring that the minimum bodyweight was not zero. Evan attempted 

several times to find what he called the “best matching line”. He used a moveable line on 

his CAS calculator screen showing a joined plot of the world record lifts for males against 

their estimated or real weight (Figure 3a) with the line locked to pass through (0, 0) 

(Figure 3b). He anticipated, before he plotted the points, that these would be roughly 

linear starting from zero, “because weight sort of starts at zero”. He realized that the 

model he produced was only “accurate” for the lower weight categories, as he had 

removed the others; because, he said, if he included them then the lower categories did 

not fit his linear model so well.  

[INSERT Fig 3] 

He acknowledged a linear model did not fit all the data, “because it curves, and 

there will be a limit on it [running the tips of the fingers of his closed hand across the 

points in a curved fashion, Figure 3c], like how much it will weigh. And like it is not 

going to keep a constant rise like this [running his finger-tips up the first 5 points, 

Figure 3d], because you can’t like, you can’t lift it.” 
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Modeling the Phenomenon–Believing Model Applies Generally 

Finally, there was only one team from either site who were modeling the phenomenon 

and believed that was what they were doing. Olive team (Sui, Tara, Veta)  from 

Earnshaw College was looking for a rule that covered everyone for the PSOs, not just 

the dataset. They based their modeling on their own measurements and a small subset of 

the dataset. Following an initial exploration of any physical theories they knew about 

body part lengths, such as “your shoe length is the same as your forearm” (Tara), they 

started with linear regression of the full dataset, as this strategy was elicited by the 

teacher in a well-orchestrated whole class discussion and she had later dismissed a 

question from Tara about how to show an error interval in a measurement as being off 

track. They generated a scatterplot on Tara’s CAS calculator, but did not understand it, 

as she had plotted knee height versus knee height. So, they returned to looking at their 

body proportions and the relationship of these to their height. Tara indicated they 

planned to look at knee height (Kh) and then wrist to elbow (WtE), to estimate overall 

height (H).  

Tara had shown her team her wingspan during the initial whole class discussion as 

an example of a rule of thumb saying, “That’s how tall you are.” They now looked at the 

length they needed as consisting of their forearms, which should be the same lengths, 

similarly with upper arm lengths and then their torso, which Sui pointed out was 

unknown. They started making estimates such as Arm = 2WtE, and suggested checking 

by measuring on themselves. Sui suggested doubling the WtE could find the demi-span, 

which they could also test by measuring, as demi-spans were not in the given dataset. 

Tara returned to using the scatterplot and linear regression on the CAS calculator 

after a visit to their team by the teacher. A comment by the teacher about recording what 

was in each list triggered, for her, the reason that their attempt at linear regression was 
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unsuccessful. She generated and recorded the linear model and its goodness of fit values 

and her interpretation of these as: y = -170.5 + 0.4x, where y = height and x = knee height,  

r2 = 0.67 = moderate. For Tara, moderate for “the strength of the data” meant the data 

“isn’t very accurate” but, more telling, was the fact that the team still did not understand 

what it showed them, as it “didn’t make any sense” (Tara, VSR).  

From this point on, they “used our own bodies and figured it out from there” (Tara, 

VSR). Arm = 2WtE led to Demi-span = 3WtE to predict height. Testing on Tara and Veta 

gave mixed results, but an exchange between Veta and Tara indicated Veta expected that 

any models they made could not exclude short people like herself, so their idea of stating 

the degree of error expected as an interval, was reiterated. They then returned to 

considering knee height with Sui observing, “if you times your knee height by four it kind 

of gets your height”. For Alice, the first person in the dataset, Sui had found the ratio, 

H/Kh = 3.7. They started to test this on the given dataset, but moved on to wrist to elbow, 

as the teacher told the class they should be onto their second model.  Both 5 and 4 were 

suggested as multipliers for knee height to estimate height, but Tara wanted what they 

were doing grounded in reality, so brought them back to relating what they were doing to 

their wingspans. Sui suggested that Tara’s chest was about the same length as her forearm. 

They then decided to get an idea of the width of torsos by finding 4 x WtE, which 

corresponded to the length of the arms, and compared this to the heights of Asha, Bindi 

and Alice in the dataset, finding differences of 540, 560 and 550mm, respectively. The 

model for height was then H = 4WtE + c, where c was the average of widths of torso (i.e. 

the average difference between the three predicted total length of arms and actual heights 

in their comparisons). They tested on themselves empirically by measuring, believing the 

model should work generally. Finally, two rules relating wrist to elbow and height were 

proposed, one for males and one for females: HM = 4WtE + 750 and HF = 4WtE + 550, as 



 
25 

they expected males to have wider torsos, so allowed an extra 200 mm. The rule for 

females they again tested on themselves empirically. They noted the need to expect 

variation and so “give or take 100 millimetres” when using the models. In this instance, 

the modeling was driven mainly by a desire to engage with the underlying phenomenon 

by understanding the relationships existing between the variables in the situation, 

informed by wanting to integrate their personal theories about the physiology of the 

situation with the mathematical objects they used to model it, in a way that made sense 

to them. 

Influence of Digital Tools on Data Modeling Approaches to the Modeling Tasks 

To gauge whether there was any influence of digital tools, with curve fitting and 

regression capabilities, on students’ choice of data modeling approach, we turn attention 

to Table 3. The two teams, where members were engaged in modeling the phenomenon, 

both used the CAS calculator. Evan from Red team started immediately by plotting a 

scatterplot of the weight categories of male weightlifters and their world record lifts on 

his CAS, expecting that he could use the fitting of a line of best fit by eye by using the 

moveable line facility to construct a linear model in the WLT, and so predict the missing 

world standards. The availability of the calculator to do the plot enabled construction of 

an initial model and further model exploration. However, the dataset was small and the 

scatterplot, fitting of the line, and finding an equation for it could have been done by 

hand or missing values read from the line. Olive team generated a linear model in their 

attempt at solving the PSO task using linear regression with goodness of fit values; but 

abandoned this approach for one where they were able to make sense of their modelling 

using their understandings of the relationships between variables in the context, based 

on proportional models.  
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With respect to Zbiek’s (1998) modeling approaches of technology use,  there were just 

two examples of use of the Fitted Function Selector approach, where final model choice 

was selected on the basis of Goodness of Fit values, rather than any knowledge of the 

real situation. Both teams using a modeling the dataset approach, treated the task as 

practice in function-fitting rather than as an opportunity to build and validate a model. 

Five teams used  the Potential Function Generator approach for at least part of their 

modeling with some aspects of the real world being used to select or reject their 

model(s). Given that the purpose of their modeling was seen by virtually all groups as 

prediction, the high incidence of Scatterplot/Graphing Tool approach is unsurprising. 

This was used by teams using either data modeling approach. With respect to RQ1b, 

having access to technological tools allowed either approach to data-modeling to be 

enacted and enabled the use of least squares regression, which no student was able to do 

by-hand, as a by-hand approach was not part of their learning experiences. The tools 

allowed several models to be considered in graphical form easily within the timeframe 

allocated, a point several students made in the focus group and VSR interviews.  

Modeling Processes Engaged in When Modeling These Data-Rich Situations 

Tables 4a and 4b present the approach taken (i.e. modeling the dataset or modeling the 

phenomenon), and the modeling processes engaged in by students at the two sites whilst 

modeling these data-rich situations as a partial answer to RQ2. Each set of data for a 

team was coded for instances of cognitive activities in the transitions in the modeling 

process shown in Figure 1. Some additional cognitive activities related to modeling 

processes were also coded (see Table notes). Further details of cognitive activities in 

these transitions is evident in the modeling purposes of use column of Table 3. 

For transition 1, there were only two incidences of simplifying, one in a team 

fully aware of using the modeling the dataset approach and one by a team fully aware 
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they were using a modeling the phenomenon approach. Both occurred in the PSO Task. 

In transition 2, the making of assumptions was very low and there were no incidences of 

making assumptions in any other transition. The three occurrences were in the PSO task 

with teams taking a modeling the dataset approach. There remained an imperative for 

teams to understand relationships between relevant variables in the data with either 

approach. Structuring of the messy real-world situation was not always evident but 

when it was, it was based on recalling experiential knowledge. Structuring was 

identified in modeling of both tasks with teams employing either approach. Working 

mathematically was evident for all teams, with some verifying output of their models 

from a mathematical perspective as well, enabled for several teams by access to digital 

technology (see Table 3). Interpreting mathematical output was evident in 14 of the 19 

team attempts at the tasks. In transition 5,  comparing and, to a slightly lesser extent, 

critiquing of  different models occurred in most teams but validating, in the sense of 

reflecting on their models in light of the problem posed in the real situation, and 

evaluating that the correct model had been constructed for it, was rare. 

In transition 6, several teams rejected reasonable models in terms of fit and 

realistic match to the situation based on being too inaccurate when extrapolating beyond 

the data (for larger values of the independent variable), whilst simultaneously ignoring 

similar issues when extrapolating for smaller values. This occurred in both tasks and for 

both data-modeling approaches. The last transition highlighted difficulty with revisiting 

the model as several teams did not do so, as their time management did not allow, they 

did not know how to, or they were not inclined to want to engage further in doing any 

more mathematics. However, of the teams who did attempt to revisit, several merely 

revisited the same model using different variables, not a new model, or for the 

refinement of an existing model. Again, this occurred in both tasks and with both 
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approaches. 

Discussion and Conclusion 

The aim of this paper was to characterize how students working in small teams act when 

working with data-rich modeling tasks in order to develop meaning for their modeling 

and the models they produce. In particular, the differences between modeling the 

dataset and modeling the phenomenon were explored to add to the sparse reporting and 

discussion of this in the literature to date (e.g. Galbraith, 2007; Riede, 2003). Riede’s 

examples were all in sports contexts and were the inspiration for the Weight Lifting 

Task. However, the PSO Task is from a non-sports context, as was Galbraith’s daylight 

example. Most student teams in this study took a modeling the dataset approach, but the 

degree they were aware of this differed from a deliberate choice to do so, and 

acknowledgement of this, to believing they were not doing this but instead, modeling 

the phenomenon itself.  

As the students were learning to model and to develop meta-knowledge about 

mathematical modeling in technology-active classrooms,  it was pleasing to see many 

teams looking for relationships within the situation guided, to some extent, by their 

personal physical/physiological theories about the interplay of what they considered 

relevant and irrelevant variables as proposed previously by Czocher and Hardison 

(2021). When there was more alignment between these personal theories, espoused 

mental models (Waisel et al., 2008) of the situation (although only a few incidences of 

these were revealed in the collected data) and the mathematical modeling being 

employed, the quality of the modeling was higher. The presence of technology-

generated external visualizations such as scatterplots, or sorted displays of categorized 

derived values such as ratios and averages, allowed students to discuss these mental 

models as they externalized their thinking and augmented argumentation within their 
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teams about suitability for representing the situation.  

With respect to the modeling processes engaged in by students whilst modeling 

these data-rich situations, the foreshadowing by Caron in her polemic chapter (Caron, 

2018) that use of such tasks would lead to a quite limited experience of the processes of 

modeling and rely on little development of an understanding of the real situation being 

modeled was not borne out for most teams as is shown in Tables 4a and 4b and 

exemplified in the findings section. For some transitions, incidence of particular 

cognitive activities, namely, simplifying, making assumptions, verifying and validating 

was less than ideal, nevertheless. Lack of particular processes was not unequivocally 

associated with either approach. However, it might be that the tasks used did not evoke 

enough examples of modeling the phenomenon for any trends to be seen, so further 

research in this area is warranted. 

With respect to theory development, we have been able to identify incidences of 

both types of approaches to data-rich situations in these modeling tasks. The relatively 

low incidence of modeling the phenomenon identified here may, however, be an 

artefact of the data used in the study, or its local context, rather than a real one. Data-

rich modeling can, and should, involve considered use of data but also accounting for 

knowledge of the problem context (Galbraith, 2007; Riede, 2003).  

From an educational practice perspective, data-rich modeling tasks as used here, 

unlike other forms of modeling tasks, allow modelers to focus on a dataset as an 

instance of a phenomenon and/or as the phenomenon itself informed by scrutiny and 

analysis of this particular instance. Only focusing on the dataset limits concentration on 

the phenomenon, but it also provides a range of options for initiating modeling. It thus 

allows informed class discussions to contribute to students’ meta-knowledge  about 

mathematical modeling by considering whether students are modeling the dataset or 
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modeling the phenomenon, their awareness of the data-modeling approach taken and 

their thinking about the generality and area of application of the models under 

construction. There is also opportunity to discuss as a whole class, or within group 

facilitation, how a model of the data might not easily translate to an explanation of why 

the model aligns with the situation being modeled. 

Students have access to multiple functions in technology-active environments, 

often before they know much about the various function types typically in secondary 

education. Teachers can, and should, provide opportunities for students to make sense 

of how technological functions of tools such as CAS calculators and spreadsheets with 

in-built trendline choices can be used sensibly when modeling. With data-rich tasks, it 

seems eminently sensible to produce plots of some, or all, of the data and reflect on 

these (Brown, 2015). Depending on one’s knowledge of the context under investigation, 

these plots can confirm anticipated relationships, or suggest relationships, that should 

then be considered in terms of the context. Given data-rich tasks have reasonable sized 

datasets, using tools such as regression with some thought to function selection can 

empower users.  

An increased emphasis by teachers on students better communicating their 

reasoning and decision making as they solve real-world tasks is warranted. A tendency 

to communicate once finished modeling, or time was running short, restricted 

opportunities for students to recognize errors, resolve different understandings in the 

team, and emphasize connection between the mathematical and real worlds (Pollak, 

1997). This emphasis may also result in students becoming more aware of their data-

modeling approach as part of the meta-knowledge about mathematical modeling 

students are expected to develop when using data-rich modeling tasks of this nature. It 

may help them keep focus on the real-world problem and not become stuck in the 
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mathematical world, forgetting the purpose of solving the task.  

It is important that students reflect on their modeling and model(s) produced 

(Maull & Berry, 2001; Yoon & Thompson, 2007) and engage in the cognitive activities 

associated with the transitions from accepting of the solution and reporting (transition 6) 

and  revising the model and returning to the real-world situation (transition 7). To this 

end, curricula documents should include increased emphasis on the domain over which 

a function might be useful. The tendency to reject reasonable models, both in terms of 

fit and realistically matching the real-world situation, might then be counteracted. 

However, the Fitted Function Selector approach (Zbiek, 1998) of seemingly blindly 

accepting a regression model and also selecting best on the basis solely of a statistical 

measure must be discouraged as not appropriate when modeling. Students and teachers 

need to be more aware that the closeness of fit of selected data to a function does not 

necessarily reflect reality. Taking a regression model as a starting point can be 

appropriate where needed, using functionality such as moveable lines (as used by Evan 

in Red team), but also recognizing that CAS-enabled technologies generally allow users 

to also dynamically manipulate a graphical model to reflect real-world considerations 

and represent plotted data. This suggests that with today’s digital technology, a merging 

of the Potential Function Generator and ScatterPlot/Graphing Tool (Zbiek, 1998) should 

be the approaches encouraged as they are in keeping with expanding students’ meta-

knowledge about modeling.  The results from this study depend on the teaching and 

learning context, the actual tasks used, and the work of the teams selectively reported. 

This must be borne in mind in interpreting them. 
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Table 1. Details of implementation of the two tasks at the two schools. 

Task Implementation Participants Teams 

PSO mid-August 2019 

100 minute regular lesson 

at Heathcliff College 

13 students in Year 10 

elective class, 5 females 

and 8 males 

5 teams of 2 and 1 of 3 - 

self allocated 

PSO early September 2019 

73 minute regular lesson 

at Earnshaw College 

22 students in Year 11 

General Mathematics 

class, all female 

2 teams of 2 and 6 teams 

of 3 - teacher allocated 

WLT late November 2019 

100 minute regular lesson 

at Heathcliff College 

12 students in Year 10 

elective class, 5 females 

and 7 males 

3 teams of 2 and 2 teams 

of 3 – 4 teams same self-

allocated as PSO, fifth 

team formed by partner of 

an absent student 

combined with a pair  

Note. All teams were single gender. 
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Table 2a. Selected Rows from Partially Ordered Meta-Matrix: Modeling Approaches (Heathcliff College Data). 

Team Approach Awareness Purpose Alignment of Physical Theories/ Mental 
models or images/ Mathematical Modeling 

PSO Task 

Green 
(Una 
& 
Tegan) 

Modeling part of dataset – models of shoe length 
and knee height produced from ratios of averages 
based on data from 7 people in given data set – 
says shoe length “best” based on 5 trials from 
data of people in given data set. 

Believe model applies more 
generally in adult population 
“because they are people” 
(Tegan, VSR). “Maybe not for 
children because children are a 
bit different. The growth rate 
is much different from ours. I 
don’t mean ours, from adults” 
(Una, VSR) 

Finding a rule that 
would allow PSOs 
to predict the 
heights of the 
people more 
accurately (Tegan, 
Report). 

Physical Theory: “Shoe length is it’s kind 
of, really it’s better to the person’s overall 
height, like the bigger shoe is obviously 
taller because you need bigger shoes to 
help balance the person more as they 
weigh more” (Una, VSR). Alignment 
between Physical Theory and 
Mathematical Modeling. 

Blue 
(Eric & 
Ray) 

At start just thought of data only as “numerical 
values” (VSR) then thought about them as lengths 
on their own bodies (Ray, Imp & VSR). Make 5 
models for overall height based on summation of 
all measurements, summation of multiples of 
selected combination of measurements (so a 
proportional model) and use of ratios of single 
measurements (wrist to elbow and face height). 
They eventually use averaging with proportional 
combination model to generate Ht = Av FH + 2 x 
(Av KH + Av WtE) based on 40 in the dataset. 
Earlier models based on a few pieces of data 
(“focused more on those closest to the top”) 
rejected on basis of lack of precision. Did not 
think to test on anyone outside of dataset (VSR). 

Expected to be able to find a 
perfect formula for the data 
set (Ray, VSR). 
Eric says they are assuming 
that the measurements hadn’t 
changed (“they have not 
grown since the measurements 
were taken”) but then Ray 
says it wouldn’t matter 
because they “would all be 
taken at the same time, 
regardless”. (Imp) 

Finding a perfect 
model to predict the 
heights of the 
people in the 
dataset (Ray, VSR). 

Mental Image: picturing lengths mapped to 
make up person’s height (“I kind of just 
looked at my own body and tried to figure 
out any patterns I could”)– rejected shoe 
length as “a horizontal measurement, not a 
vertical one” (Ray, VSR & Imp); 
expecting “we could find something that 
was perfect” (Ray, VSR). Physiological 
Theory: Gender, ethnicity. age dismissed 
as “not a direct measurement, like 
something that would contribute to height, 
in my mind” (Ray, VSR). In some of the 
modeling, alignment between Mental 
Image, Physiological Theory & 
Mathematical Modeling. 

White 
(Ned & 
Joe) 

Modeling part of the dataset (36). Looking for a 
correlation between their height and 
measurements given. Looking for a pattern (Ned, 
Imp). Using four “imaginary people that have the 
averages of those” (Ned, Imp) gender x ethnicity. 
Hand sort and enter into Excel. Find averages for 
all “mini measurements” for shoe length, knee 
height, wrist to elbow, face height (including age) 
then ratios from height/mini measurement (not 

Believes use of model is 
unrealistic method “’cause I 
don't like look at someone and 
then figure out how long or 
short their arms are. So I don't 
think anyone else would've.” 
(Ned, FG) 

Prediction – 
making a height 
“estimative tool” 
for PSOs “to be 
able to identify the 
height of people 
and suspects” (Ned, 
Report & Imp). 

Physical theories: “If there was someone 
really young they could still have time to 
grow. But then I realized that each of the 
ages were up to 20 and that’s usually when 
people stop growing.” “And then the 
gender, I know that from science, that 
biologically women usually are smaller”. 
Sister same height but shoe size 
“drastically different”. Friends different 
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age) producing a table of multipliers. “PSOs are 
now able to identify the criminals height by 
multiplying their measurement by the numbers 
provided categorized by their nationality and 
gender” (Ned, report). 

races and ethnicity – different heights but 
trends “my friends who are more Asian 
based are usually smaller. Our shoe sizes 
don’t differ that much.” Age irrelevant as 
you “can’t grow after the age of 26” (Ned, 
Imp). Alignment between Physical 
Theories and Mathematical Modeling. 

Weight Lifting Task  
White 
(Ned & 
Joe) 

Modeling part of dataset – ignore super heavy 
weight category “because it was so much more 
drastically different” (Ned, FG) and the effect it 
had was negligible. He did not think at the time to 
test the effect of this (Ned, FG). Ned anticipated 
there will be a relationship between “how much 
they weigh and how much they can lift” (Imp). 
He suggested converting the data into “a ratio so 
it is like for each kg they weight more than 
55,…the weight they can lift increases by a set 
amount”. By looking at differences and averaging 
by hand, he states: “For each 6kg increase in 
weight [above 55 kg] they weight [sic can lift] 
9.25kg more” for male data (Ned, Imp). Wanting 
to continue a ratio approach by hand himself, he 
asked Joe to use Excel to produce linear models. 
“We put the data onto the computer, made a graph 
of the data and then we formed a trend line from 
the data” (Ned, Report). Choice of model based 
on mathematical expediency as linear is 
considered easiest and quickest (Ned, VSR). Ned 
uses his ratios as gradients in linear models which 
are very close to the computer generated versions. 
Uses computer models to generate missing world 
record lifts, compares predictions to actual lifts to 
select a World champion based on the lifters 
whose points were above the trendline being good 
performers, distinguishing between these by size 
of difference between actual & predicted lifts. 

Fully aware restricting to 
dataset given. “I wasn’t really 
having a model of humans 
doing weight lifting, I was just 
having a model, like based on 
the averages of numbers, to 
estimate this number [points to 
world standard needed]” (Ned, 
VSR). Both totally aware in 
post task interview they were 
not modeling the 
phenomenon. “Obviously, 
there is a limit to what humans 
can hold because if there 
wasn’t, if any human can carry 
any weight then it wouldn’t 
need robots”… “There 
probably was a limit and we 
probably should have taken 
that into account. ...quickest 
way to have a linear” (Ned, 
VSR). Reason super 
heavyweight class omitted 
trying to make a linear graph 
& using point would have 
“curved it more” and “messed 
up everything”. Claims better 
to use linear model with small 
dataset (Ned, FG). 

Prediction – “you 
need to make a 
model to predict 
this [pointing to 
World Standards 
needed] (Ned, Imp). 
“Filling the empty 
parts of the table” 
(Ned, Report). 
“I feel like I kind of 
narrowed myself 
down just by 
viewing it as the 
whole goal was to 
find these two 
[world standards] 
(Ned, VSR). 
Seeking “a trend 
between how much 
they weigh and how 
much they can lift” 
(Ned Report). 

Physiological Theories: Humans are 
limited by their physiology in how much 
they can lift and it would not “go forever” 
so it was acceptable to leave out the upper 
end (Ned, FG). 
Females have different physiology so 
expect their relationship could be different 
from that for males (Both, Imp).   
Misalignment between Physiological 
Theories and their Mathematical 
Modelling. 
 

Note. FG focus group; Imp lesson implementation; VSR Video stimulated recall; FH face height, KH knee height, Ht height; SL shoe length; WtE wrist to elbow length,. 
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Table 2b. Selected Rows from Partially Ordered Meta-Matrix: Modeling Approaches (Earnshaw College Data) to PSO Task 

Team Approach Awareness Purpose Alignment Physical Theories/ Mental 
models/ Mathematical Modeling 

Silver 
(Deja, 
Eve) 

Modeling full data set. Write problem in form that can 
be mathematised: ‘the PSOs are struggling to be able 
to estimate the height of people potentially envolving 
[sic] crimes]’. Use Knee height versus height and wrist 
to elbow versus height with scatterplot  and Lin Reg 
and record only a, b, r and r2 but seem unaware of 
how this could be used to predict height. Then did 
some nonsensical calculations (height – shoe (max)) 
saying they are all means, min. and max (Silver Imp, 
Report). 

Appear to think it is an artificial set 
of data that they are modeling – 
“These people, they are real? Isn’t 
Ken the Barbie doll?” “Who would 
name their kid Guy?” (Silver, Imp) 

Prediction - “trying to 
find the height” (Eve, 
Imp). Deja struggles to 
understand purpose 
given height of dataset 
is known (Imp). 
(Mentions this 
throughout).  

Physical Theory: “Like roughly on 
the age, kind of they are the same 
height because people are roughly 
around the same. It was like the same 
age, kind of like the same race and 
gender, were roughly the same 
height.” (Imp). Flawed mental model 
of situation: “I did… maximum 
height take away the maximum shoe 
height to find the average” (Deja). “It 
gave you like a knee length average 
of people’s height” (Deja). 
Misalignment of some of their 
modelling & mental model. 

Pink 
(Iona, 
Jen, 
Kay) 

Modeling part of dataset (40 – omit Ken). Need 
multiple rules as might be only able to get a specific 
estimate at a given time. No point just saying ‘Shoe 
length is ‘best’. Consider finding rules for a particular 
subset (e.g., males or Asian) to provide a more 
accurate rule if known, “if the regression was stronger 
when we only did boys then you could be more 
specific” (Kay, Imp). Generate several linear models 
for several variables stating reliability using goodness 
of fit values, e.g.,  height = 871.3707 + 1.6260894 
*knee height. R = 0.7090863 “Oh, that is pretty 
strong” (Kay, Imp). Test one model on Alice & 
another on Bob. Report includes only values, although 
during modeling Kay notes “I just tested knee height 
[male specific model] on Bob and it works”. Use r & r2 

to compare strength, report only list of 5 models with 
no discrimination to impractical degree of accuracy but 
stating in VSR would round in practice “because they 
are on the spot, on the job”. 

Iona and Kay say realized it was 
just a specific set of data they were 
modeling (VSR). In FG, Kay argues 
against rest of FG saying solution to 
problem is realistic & includes 
estimating from CCTV footage. In 
Imp realize they need to test their 
models beyond data set – on 
themselves if have time.  “It will be 
interesting when we get our lines of 
best fit and test it on each other” 
(Kay). “Yes, see if it works” (Iona). 
“Yeah, see if it gives our heights” 
(Kay). “We tested it but the person 
we tested it on, was included in our 
making that model” (Kay, Imp). 
Should have found a model for girls 
rather than boys so testing on 
themselves was an option (Kay, 
FG). 

Prediction -To 
generate a list of rules 
and statements about 
their reliability. “We 
used this [the dataset]. 
We figure out a 
formula to get to that 
height” (Iona, Imp). 
“The PSO lacks good 
height estimation skills. 
Utilizing their strengths 
of estimating short 
lengths, a series of 
reliable rules of thumb 
must be evaluated to 
provide a good height 
estimate” (Kay Report 
– similar in other 
reports). 

“Different things (body parts) are 
proportionate to different. …I felt 
like they weren’t all connected” -
couldn’t just add up randomly (Iona 
VSR). “Gender: you would expect all 
the boys to be on one side and all the 
girls on the other one. You can use all 
of them (i.e. variables). That’s why 
they are all there.” (Kay, Imp). 
“Depend on what smaller values they 
are able to get” (Kay, VSR). “It was 
kind of not to just have one that 
would like kind of work for all, to 
have …ways to work out a few of 
them” (Iona, VSR). “You can see the 
gender of someone … rule can be a 
bit more specific” (Kay, VSR). 
Mathematical Modelling aligned to 
mental model of situation.  

Note. Imp - Audio and video recorded lesson implementation, VSR - Video post lesson video stimulated recall interview, FG - focus group interview post lesson.  
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Table 3. Coding of Purposes of Use of Technology. 
Digital Technology Use Modeling Purposes of Use Codea  Modeling Approaches of 

technology use codeb 
Teamsc 

Home screen calculations on basic 
function calculator on laptop/CAS 
calculator  

Making choices about features considered significant 
during pre-mathematization facilitated by digital 
technology use 

N/C PSO2019 Green(HC); PSO2019 Blue(HC); 
PSO2019 Orange(HC); PSO2019 Red(HC); 
PSO2019 Mauve(EC); WLT2019 White(HC); 
WLT2019 Green(HC) 

 Using technology to verify mathematical model 
output 

UUT PSO2019 Red(HC); PSO2019 Mauve(EC); 
PSO2019 Purple(EC) use solve to compare 
predicted with actual height; PSO2019 Pink 
(EC); WLT 2019 Red(HC); WLT2019 White 
(HC) 

 Using digital technology to Work Mathematically 
with model to carry out simple calculations such as 
summation, finding averages and ratios 

N/C PSO2019 Blue (HC); PSO2019 Orange 
(HC)(+/x only); PSO2019 Red(HC); PSO2019 
White(HC); PSO2019 Teal(EC); PSO 
Olive(EC); WLT2019 Blue(HC); WLT2019 
Red(HC) [not Evan]; WLT2019 White(HC) 

Using Excel Spreadsheet with 
Function formulae such as AVG 

Using digital technology in building models – 
constructing the formula (e.g. Ht = SL x AvHt/AvSL) 
or ratio  

SGT PSO2019 Green(HC); PSO2019 Red(HC); 
PSO2019 White(HC); PSO2019 Purple(EC); 
PSO2019 Pink(EC)   

Use of scatterplot To identify error [interchanging variables] N/C PSO2019 Pink(EC)   
 To identify or get a sense of relationship SGT WLT2019 Green(HC); WLT Red(HC) 
 To confirm expected ‘linear’ trend [visually] - ‘looks 

pretty much like a line’ holding a pencil up to CAS 
SGT WLT2019 Blue(HC). 

 Compared graph of model with data points, 
determine best has ‘more dots closer to line’ 

SGT WLT2019 Green(HC); WLT2019 Orange(HC) 

Use of Scatterplot and Lin Reg to 
generate line of best fit 

Using digital technology in building models – 
constructing the formula 

SGT PSO2019 Grey(EC); PSO2019 Mauve (EC); 
PSO2019 Gold(EC); PSO2019 Silver (EC) 
[model not recorded]; PSO2019 Purple (EC); 
PSO2019 Pink(EC); WTL2019 Red(HC)[not 
Evan]; WLT2019 White(HC); WLT2019 
Green(HC); WLT2019 Orange(HC); PSO2019 
Olive(HC) abandoned for more sense making 
model grounded in reality 
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Generation of GoF Values Recorded/ generated but not used for model selection 
or comparison 

PFG PSO2019 Grey(EC); PSO2019 Gold(EC) as 
model with smaller r value (KH 0.71 cf 0.77 for 
WtE) gave closer predictions; PSO2019 
Pink(EC); PSO2019 Teal(EC); PSO Olive(EC) 

 Used to select the “best” model FFS PSO2019 Mauve(EC); PSO2019 Purple(EC) 
Sorting data with spreadsheet 
initially 

Sifting through data of a modelling situation 
facilitated by technology as part of pre-
mathematization 

N/C PSO2019 Green(HC) 

Sorting data with spreadsheet after 
first models produced 

Using sorted data to refine models produced for the 
entire dataset for subpopulations of datasets (e.g., 
based on gender/ethnicity)  

SGT PSO2019 Red(HC) 

Using technological output (e.g. 
spreadsheet, calculator calculations, 
graphical displays) 

Using technological output to facilitate group work 
by supporting argumentation between members of 
group 

SGT PSO2019 Red(HC); PSO Olive(EC); 
WLT2019 Blue(HC); WLT2019 Red(HC); 
WLT2019 Green(HC) 

Tracing along the trend line Using technological output to facilitate group work 
by supporting argumentation between members of 
group – “Just explaining it (Lyn, VSR) During 
implementation – traced slope “as your height gets 
bigger, the knee height …  

SGT WTL2019 White(HC); WLT2019 Blue(HC); 
PSO2019 Mauve (EC) 

Using moveable line to find by-eye 
location of best linear model 

Using digital technology in building models -
comparing fit of model by eye 

SGT WLT2019 Red(HC)[Evan] 

Using Excel spreadsheet to store 
and display manually sorted data 

Using digital technology in building models – ratio UUT PSO2019 White(HC) 

Use of technology enabling use of 
larger data set 

Having access to technology allowed choice of size 
of sample to investigate (not limited by more time 
consuming by-hand methods) 

N/C PSO2019 Gold(EC); PSO2019 Silver(EC); 
PSO2019 Olive(EC) 

Using internet to find procedural 
descriptions of how to carry out a 
technological technique (e.g., 
sorting, using a moveable line, how 
to form an equation) 

 N/C PSO2019 Green(HC); WLT2019 Green(HC) 

Note. AVG Average command; EC Earnshaw College; HC Heathcliff College; FFT fitted Function Selector; GoF Goodness of Fit; Ht height;  N/C no code; SGT 
Scatterplot/Graphing Tool; SL shoe length; UUT Unneeded/Unused Tool; VSR Video post lesson video stimulated recall interview. 
aInitial codes from Villareal et al. (2018, p. 333); bCodes from Zbiek (1998, p, 198); cUse of bold indicating teams displaying modeling the phenomenon as approach 
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Table 4a. Partially Ordered Meta-Matrix: Modeling Processes (Heathcliff College Data). 

  Cognitive activities in Transition  

Team Approach 1  2 3 4 5 6 7 

PSO Task     
Green (Una & Tegan) MD U, St, S, 

IntC 
IdV, F, M, 
J 

WM, Ver   IntM Cp, Cq Com, J (prec.) RV (same model form but other Var) 

Blue (Eric & Ray) MD U, St, IntC F, M WM IntM Cp, Cq, Val Com, J (prec.  
– max error) 

RV (other models & to refine 
proportional combination model) 

Orange (May, Clare, 
Ruby) 

MD U, St, IntC F, M WM  Cp Com  

Red (Tom, Pat) MD U, St, IntC F, M WM IntM Cp, Cq Com, J 
(consistency) 

RV to refine models accounting for 
ethnicity 

White (Ned & Joe) MD U, St, IntC, 
N, S 

A, IdV, F, 
M, J 

WM, Ver IntM  Com  

Brown (Evan & Zald) MD U, Int C F, M WM, Ver Int M Cp, Cq, Val  Com, J (prec.) RV (same model form but other Var) 
Weight Lifting Task      
Green(Una & Tegan)  U, St, IntC F, M WM IntM Cp, Cq Com, J (fit) RV(other models linear&logarithmic) 

Blue (Eric & Ray) MD U, St, IntC F, M WM IntM Cp, Cq Com  
Orange (May, Clare, 
Ruby) 

MD U F, M WM  Cp Com  

Red (Evan, Tom, Pat) MD/MP(Evan) U, St, IntC F, M WM IntM Cp, Cq Com RV (same model form but other Var) 
Evan does not RV 

White (Ned & Joe) MD  U F, M WM IntM Cp Com  
Note. A assuming;  Com communicating; Cp comparing: Cq critiquing; F formulating; IdV identifying variables; IntC interpreting context; IntM interpreting mathematical 
output; J justifying; M mathematizing; MD modelling dataset or part thereof; MP modelling phenomenon; N noticing; RV revisiting; S simplifying; St structuring; U 
understanding; Val validating; Var Variable(s); Ver verifying; WM working mathematically; prec. precision.  
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Table 4b. Partially Ordered Meta-Matrix: Modeling Processes (Earnshaw College Data). 

  Cognitive activities in Transition  

Team Approach 1  2 3 4 5 6 7 
PSO Task     
Gold (Ann, Bria, Carol) MD U, St, F, M WM IntM Cp, Cq Com  

Silver (Deja, Eve) MD U, St     Com  
Purple (Fay, Gen, Honi) MD U, St, Int 

C 
F, M WM IntM Cp, Cq Com  

Pink (Iona, Jen, Kay) MD U A, F, M WM  Cp Com  
Mauve (Lyn, Macy, 
Leita) 

MD U, Int C F, M (ratio 
model) 

WM IntM Cp, Cq Com RV (look at refining to Caucasian Female model – 
reject as inaccurate and low r; test several variables) 

Grey (Noni, Ona, Polly) MD U, Int C F, M WM IntM Cp, Cq Com, J 
(prec.) 

RV (reject an incorrect model, same model -using other 
variables) 

Teal (Quin, Rosa) MD U, Int C A WM  Cp, Cq Com  
Olive (Sui, Tara, Veta) MP U, St, S, F, M WM IntM Cp, D Com RV (other models) 

Note. A assuming;  Com communicating; Cp comparing; Cq critiquing; D deciding; F formulating; IntC interpreting context; IntM interpreting mathematical output; J 
justifying; M mathematizing; MD modelling dataset or part thereof; MP modelling phenomenon; RV revisiting; S simplifying; St structuring; U understanding; WM working 
mathematically; prec. precision. 
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Figure 1. Representation of the mathematical modeling process (Stillman, 2011). 

 

 
a 

 
 

Figure 2. a Eric’s plot of weight lifted vs actual weight of male record holders. b Ray’s 

quadratic model for weight lifted vs actual weight of females. 

 

 

    

Figure 3. a & b Evan fitting a “best matching line” passing through (0, 0). (Note: Last data 

point is incorrectly entered.) c & d acknowledging top weight categories do not fit his linear 

model produced with the lower weight categories. 

  

a b d 
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Figure 1. Representation of the mathematical modeling process (Stillman, 2011). 

Figure 2. a Eric’s plot of weight lifted vs actual weight of male record holders. b Ray’s 

quadratic model for weight lifted vs actual weight of females. 

Figure 3. a & b Evan fitting a “best matching line” passing through (0, 0). (Note: Last data 

point is incorrectly entered.) c & d acknowledging top weight categories do not fit his linear 

model produced with the lower weight categories. 

 

 


