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The human brain relies upon the dynamic formation and dissolution
of a hierarchy of functional networks to support ongoing cognition.
However, how functional connectivities underlying such networks
are supported by cortical microstructure remains poorly understood.
Recent animal work has demonstrated that electrical activity
promotes myelination. Inspired by this, we test a hypothesis that
gray-matter myelin is related to electrophysiological connectivity.
Using ultra-high field MRI and the principle of structural covariance,
we derive a structural network showing how myelin density differs
across cortical regions and how separate regions can exhibit similar
myeloarchitecture. Building upon recent evidence that neural
oscillations mediate connectivity, we use magnetoencephalography
to elucidate networks that represent the major electrophysiological
pathways of communication in the brain. Finally, we show that a
significant relationship exists between our functional and structural
networks; this relationship differs as a function of neural oscillatory
frequency and becomes stronger when integrating oscillations over
frequency bands. Our study sheds light on the way in which cortical
microstructure supports functional networks. Further, it paves the
way for future investigations of the gray-matter structure/function
relationship and its breakdown in pathology.
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The way in which integration of functionally specific brain re-
gions supports ongoing cognition is one of the most important

questions in neuroscience, and noninvasive in vivo imaging pro-
vides a tool to investigate this interregional connectivity in terms of
both brain function and structure. Functional connectivity refers to
statistical interdependencies between patterns of brain “activity”
measured at separate cortical locations (1) and, even in the
“resting state,” measured spontaneous brain activity defines non-
random networks that are related to cognitive processes (2). The
way in which these functional networks are supported by structural
white-matter pathways is reasonably well understood (3). However,
it is likely that the structure–function association extends to gray-
matter morphology, for which fundamental understanding is
lacking. Structural morphology of the cortex is known to vary
significantly between individuals, and does so in an organized
fashion. For example, individuals with a high cortical volume in
Broca’s area typically exhibit high cortical volume in Wernicke’s
area, reflecting a language network (4). Similar observations can
be made between other associated cortical regions (5, 6). This is
known as structural covariance (7–9) and it allows the formation of
matrices showing how structural properties of individual brain
regions covary over subjects. In this paper, we assess structural
covariance based upon cortical myeloarchitecture and probe its
relationship to functional networks that are assessed based upon
measured spontaneous brain activity.
Noninvasive mapping of cortical myeloarchitecture (10, 11) has

grown in popularity in recent years, fueled by an increased interest
in myelination-based parcellation (12). The general finding is that
primary sensory cortices tend to be heavily myelinated whereas
regions associated with multisensory integration are less myelinated

(10, 13). More localized spatial changes in myelination also exist;
for example, subtle subdivisions between regions are apparent in
visual (14, 15), somatosensory (16), and auditory (17) cortices.
There is evidence of cross-species changes in myelination (18), with
the brains of nonhuman primates more heavily myelinated than
those of humans. Although still unproven, findings suggest that
cortical myelin may inhibit plasticity; for example, early sensory
areas may require less plasticity, and therefore more myelin,
whereas higher-order areas have less myelination, which might
enable greater plasticity (10). Cortical myelination has been shown
to change throughout development, and is not established fully
until the third decade of life (19, 20). However, no studies have yet
used myelin mapping to examine structural covariance or the link
between a cortical myelin network and functional connectivity.
Previous work does show a direct link between myeloarchitecture
and function (21–23). For example, a recent study (24) showed that
optogenetic stimulation directed to increase neuronal firing in
premotor cortex of mice promotes oligodendrogenesis and there-
fore myelination, thus providing a link between neuroelectrical
activity and myeloarchitecture. Further work (25) suggests that the
amount of cortical myelin in a region predicts the magnitude of
electrophysiological responses. Taken together, the evidence con-
verges to a hypothesis that, if neuronal firing acts to shape the
spatial signature of myeloarchitecture, then networks reflecting the
brain’s primary pathways of functional connectivity should be
predictive of structural networks of intracortical myelin.
Magnetoencephalography (MEG) characterizes electrical ac-

tivity in the brain via measurement of extracranial magnetic fields
(26). The MEG signal from any one brain region is dominated by
neural oscillations (rhythmic changes in electrical activity) that are
observable in the 1- to 200-Hz frequency range. Evidence suggests
that these oscillations represent an intrinsic process by which both
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short- and long-range functional connections in the brain are
maintained. With this in mind, a growing body of work has begun
to show that, via appropriate modeling of MEG data, networks of
electrophysiological functional connectivity can be mapped (27–
29). The rich temporal complexity of MEG signals means that
multiple ways to characterize functional connectivity exist (30).
However, one of the most robust methods is amplitude envelope
correlation (AEC), which probes temporal relationships between
the envelope of oscillations, in a frequency band of interest, at
spatially separate brain regions. Our previous work has shown that
this intrinsic mechanism of (noninvasively measured) electro-
physiological coupling underpins many of the observable resting
state networks (RSNs) (27, 31). Given that these measurements
represent the principal long-range functional connections in the
brain, and given the evidence that electrical activity mediates
myelination, we hypothesized that networks of oscillatory enve-
lope correlation, measured between parcellated regions and in
multiple frequency bands, would allow prediction of a network of
structural covariance representing myeloarchitecture.

Results
Fifty-eight volunteers (39 ± 12 y old, 27 male) took part in the study.
Using ultra-high field MRI, we measured magnetization transfer
(MT) (32) across the brain, which serves as a marker of myelin.
These measurements were parcellated into 64 cortical regions
according to the automated anatomical labeling (AAL) atlas (Table
S1) and normalized by region volume to give myelin density esti-
mates. Following this, assessment of structural covariance between
all possible AAL region pairs allowed derivation of a network matrix
showing the degree to which separate (AAL) regions exhibit simi-
larities in their myeloarchitecture (see SI Further Analyses and Fig.
S1 for an alternative methodology). The same individuals also un-
derwent resting-state MEG acquisition. MEG data were parcellated
according to the same atlas, and RSNs characterizing functional
connectivity, between all possible AAL region pairs, were derived
using AEC in five frequency bands. With the aid of a recently de-
veloped framework (31), we then characterized the relationship
between the structural network, representing myelin density,
and functional networks, representing the major pathways of
electrophysiological communication.

Myelin Maps. Fig. 1A shows the measured MT, averaged across
subjects and plotted for all AAL regions. Red corresponds to high
myelin density, blue indicates low myelin density, and gray shows
regions where scan coverage was insufficient to gain an accurate

estimate. High myelination was observed in primary sensory cortices,
with statistical tests showing that this spatial variation was significant;
for example, significantly (P < 0.001) higher myelination was found
in primary motor cortex compared with the dorsolateral prefrontal
cortex. A hemispheric division was also noted with significantly (P <
0.01) higher MT in left compared with right sensorimotor cortex.
Fig. 1B maps the cortical variation of correlation between myelin
density and handedness (the latter measured using the Edinburgh
Handedness Inventory). A positive correlation denotes regions
where right handers have more myelin than left handers; a negative
correlation denotes regions where left handers have more myelin
than right-handed individuals. Note a significant (P < 0.05) split in
the polarity of the correlation between hemispheres.

MT Structural Covariation. The principle of structural covariance
and the structural network are shown in Fig. 1 C and D, re-
spectively. Fig. 1C shows correlation across subjects between my-
elin concentrations measured in left frontal inferior operculum
(capturing Broca’s area) and left supramarginal gyrus (encom-
passing Wernicke’s area). Results show a significant (P < 0.001)
positive correlation across subjects. Equivalent correlations can be
derived between all possible AAL region pairs, and results are
shown in Fig. 1D. Note that structural covariance between adja-
cent AAL regions is generally denoted by matrix elements close to
the leading diagonal, whereas structural covariance between distal
regions is represented far from the diagonal. The white boxes
show structural covariance between homologous regions.

MEG Networks.MEG functional connectivity matrices are shown in
Fig. 2. All networks are represented by a matrix similar to that in
Fig. 1D. The 3D brains display all connections within 5% of the
maximum value. It is clear that network structure differs between
bands: Theta oscillations support connections in frontal occipital
and parietal areas whereas alpha band-mediated connections are
predominantly occipital. The beta band shows more widespread
connectivity but is dominated by parietal and occipital connec-
tions. The low-gamma band was dominated by a sensorimotor
network.

The Relationship Between Structural Covariance and MEG. Fig. 3A
shows a “seed-based” structural covariance map (i.e., a single col-
umn in the matrix in Fig. 1D). Here, a seed region has been placed
in right inferior parietal cortex; high values depict brain areas that
show high structural covariance to the seed. A cross-hemispheric
pattern is observable with high structural covariance between ho-
mologous regions. Fig. 3B shows the equivalent seed-based map

Fig. 1. In vivo myelination measures and the struc-
tural network. (A) Mean MT contrast percentage for
all AAL regions. High MT is reflective of high myeli-
nation. Note high levels of myelination in primary
cortical regions. (B) Correlation between MT and
handedness. Positive correlations show regions
where myelin is higher in right handers. Negative
correlations show regions where myelin is higher in
left handers. (C) Example plot showing correlation
over subjects between MT measured in the AAL re-
gions capturing Broca’s and Wernicke’s areas. These
correlations are the basis of the structural network.
(D) The myelin structural network, represented as a
matrix. Each element denotes cross-subject correla-
tion in MT between two brain regions.

Hunt et al. PNAS | November 22, 2016 | vol. 113 | no. 47 | 13511

N
EU

RO
SC

IE
N
CE

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608587113/-/DCSupplemental/pnas.201608587SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608587113/-/DCSupplemental/pnas.201608587SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608587113/-/DCSupplemental/pnas.201608587SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608587113/-/DCSupplemental/pnas.201608587SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608587113/-/DCSupplemental/pnas.201608587SI.pdf?targetid=nameddest=SF1


calculated using beta band MEG data. Note the strong similarity
between the functional (Fig. 3B) and the structural (Fig. 3A)
networks. To generalize this relationship for all possible seed re-
gions, we tested for correlation between the full MT matrix
(representing all seeds; Fig. 1D) and the group-averaged func-
tional connectivity matrices for all bands (Fig. 2). The resulting r2

values (bar chart in Fig. 3C) show that functional networks mea-
sured in the beta and low-gamma bands predict significantly the
spatial pattern of structural covariance. Neither theta nor high-
gamma bands showed a measurable relationship; the alpha band
showed a trend. The inset images show seed regions for which
structural covariance is best predicted by functional networks.
Note that the structure/function relationship is strongest in pari-
etal and occipital areas and weakest in the frontal lobes. It is
noteworthy that the MEG-derived functional networks, particu-
larly in the beta band, are driven in part by canonical RSNs (27),
and by extension this suggests a significant relationship might also
be found between the spatial signature of fMRI-derived RSNs and
the structural network. This is indeed the case, and this significant
relationship is shown in SI Further Analyses, Functional Connec-
tivity and Myeloarchitecture in RSNs).
Although functional networks in individual frequency bands

show significant correlation, it is likely that the structural network
exists to support functional connectivity in all bands. For this
reason, we sought to integrate the five MEG networks to test
whether such combination could better predict structure than

independent frequency bands. Two approaches were used. First,
all five MEG matrices were combined in a linear weighted sum.
Second, these same matrices were supplemented by nonlinear
terms, formed based upon the square of each MEG matrix, and
again a weighted sum derived. Importantly, the nonlinear terms
have specific meaning: For any squared matrix, a single element,
say [1, 2], represents the inner product of the connectivity profile
of region 1 and region 2. Because this product is related to co-
variation, the matrix element will be high if the connectivity profile
of region 1 to the rest of the brain overlaps with the equivalent
connectivity profile of region 2. In this way the squared terms can
be thought of as representing brain regions that share connections
to similar areas. Fig. 4 A–C show connectivity matrices representing
the structural network (Fig. 4A) and its prediction based upon linear
(Fig. 4B) and nonlinear (Fig. 4C) combinations of MEG networks.
These relationships, along with that for the best single frequency
band, are further visualized in Fig. 4 D and E, which show “seed-
based” structural covariance (top row) alongside equivalent maps
made using the beta band (upper middle), the best linear combi-
nation (lower middle), and the best nonlinear combination (bot-
tom). Seeds were placed in right lateral visual cortex and left
superior frontal cortex in Fig. 4 D and E, respectively.
The relationship between structure and integrated functional con-

nectivity is formalized in Fig. 4F, which shows r2 values representing
correlation between the MT network and functional networks repre-
senting beta band only and linear and nonlinear predictions; the inset

Fig. 2. MEG functional connectivity matrices. Matrices represent AEC in the (A) theta (4–8 Hz), (B) alpha (8–13 Hz), (C) beta (13–30 Hz), (D) low–gamma (30–
70 Hz), and (E) high-gamma (70–120 Hz) bands. All matrices show Pearson correlation between AAL region pairs. The 3D plots shown depict all connections
within 5% of the maximum value in each band.

Fig. 3. The relationship between MEG networks
and myelination. (A) Structural covariance between
a seed region in right inferior parietal cortex and all
other brain regions. (B) Seed-based functional con-
nectivity, calculated using MEG in the beta band
between the same seed region in inferior parietal
cortex and all other regions. Note the similarity be-
tween A and B. (C) The bar chart shows correlation
between the structural network (Fig. 1D) and the
functional networks (Fig. 2). Correlation is measured
over the whole matrix (i.e., for all possible seed re-
gions) and is shown for all frequency bands. ** in-
dicates a significant relationship; * indicates a trend.
The inset images show which seed regions drive the
relationship in the bar chart [i.e., red indicates a re-
gion whose structural connectivity (MT) profile and
functional connectivity profile are highly correlated].
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images show seed regions for which structural covariance is best
predicted by the functional networks. Fig. 4 G–I show the r2 values
plotted alongside their representative null distributions. In all cases,
correlation between the structural network and MEG networks falls
outside the null distribution. Note also that this relationship gets
stronger when allowing integration over frequency bands.

Discussion
Although recent years have seen significant progress in mapping the
human connectome, the relationship between functional networks
and cortical microstructure remains poorly understood. A recent
study (24) in animals suggests that electrical activity promotes
myelination. We therefore reasoned that, if functional networks
represent major pathways of electrophysiological communication,
then those pathways should shape myeloarchitecture and a signif-
icant relationship between functional connectivity and myelin
should be observable. Our results support this, with significant
correlation between the structural network and functional networks
mediated by neural oscillations in the beta and low-gamma bands.

This relationship became stronger when integrating MEG networks
across frequency bands, suggesting that myeloarchitecture supports
networks at all measurable electrophysiological timescales.
The fact that our functional networks are measured directly

using electrophysiological imaging (as distinct from indirectly us-
ing hemodynamics) adds an extra (frequency) dimension to our
study. In the past, neural oscillations were largely ignored in favor
of measurements of evoked responses. However, the last decade
has seen a surge of interest, showing these oscillations to be an
integral feature of brain function. Recent work suggests that os-
cillations gate information flow in the cortex (33) and implies that
oscillations are an intrinsic form of functional coupling (34).
Measurable connectivity depends critically on the frequency band
studied; indeed, this is shown in Fig. 2 with marked spatial dif-
ferences between bands. The fact that the relationship between
functional networks and myelin was strongest in the beta band is
not surprising given that previous work (27, 31) has shown that
beta oscillations mediate long-range connections in a large num-
ber of RSNs (see also SI Further Analyses, Functional Connectivity

Fig. 4. Predicting myelination based on integrated MEG networks. (A–C) Matrices representing (A) the MT network, (B) the best linear combination of MEG
frequency bands to estimate MT, and (C) the best nonlinear prediction of MT. (D and E) Seed-based visualizations of structural and functional networks with
seed regions in right lateral visual cortex (D) and left superior frontal cortex (E). The lower three rows show beta band and the linear and nonlinear pre-
dictions of the MT network (Top). (F) r2 values describing goodness-of-fit between structure and function for the best-fitting single frequency band (beta) and
predictions based upon linear and nonlinear combinations of MEG frequency bands. The inset images show the seed regions driving these correlations. (G–I)
The r2 values (circles) plotted against the null distributions for the beta band (G) linear (H) and nonlinear (I) combinations.
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and Myeloarchitecture in RSNs and Fig. S2). The ubiquitous nature
of beta-mediated connections is therefore the likely reason why
the structural network correlates best with this band. However, it
should be pointed out that an inherent problem with MEG is
signal-to-noise ratio (SNR), which drops with increasing fre-
quency; it is possible that, at high frequency, the drop in corre-
lation between functional connectivity and myeloarchitecture
reflects this SNR limitation. This said, the significant improvement
in prediction when combining frequency bands does imply that
oscillations across all timescales relate significantly to myelin
structure. Interestingly, the addition of nonlinear terms also im-
proved prediction; given that these additional terms represent
brain regions that share common connections it is tempting to
suggest that shared connectivity also affects myeloarchitecture.
Our estimation of myelin was based upon measurement of MT.

Although serving as an efficient marker of myelination, it is im-
portant to note that there is no one-to-one relation between MT
and myelin density. Further, if the present method was to be used
in pathology care should be taken because the MT/myelin re-
lationship may break down. Nevertheless, our results are in
agreement with others, showing that the highest myelin concen-
tration occurs in sensorimotor, auditory, and visual cortices. This
finding supports an argument that myelin acts as a means to in-
crease the speed of processing and inhibit plasticity in these pri-
mary sensory areas. On average, there was more myelin in left
sensorimotor cortex than in right, and this likely reflects the fact
that our cohort was biased toward right handers. In agreement with
this, the hemispheric split shown in Fig. 1B suggests that this
finding is reversed in left handers, implying that brain structure
evolves to increase the speed of processing in the dominant
hemisphere. Although such asymmetries in myelin have not been
previously reported, associated asymmetries in function and
structure have been shown previously both in humans (35–37) and
animals (38). A potential limitation of our methods is that myelin
concentration was parcellated according to the AAL atlas. Al-
though this parcellation allowed derivation of network graphs that
could be compared with MEG, the regional parcellation afforded
by the AAL atlas does not take into account known differences in
myelin signature throughout the cortex. In future studies, a brain
parcellation based upon myeloarchitecture (as distinct from
cytoarchitecture) would be of high value (12). Although our study is
unique in characterizing structural covariance based upon myelin
density, previous work has shown that structural covariance net-
works can also be formed based on macroscopic properties such as
cortical thickness (4), and further that such networks correlate with
functional connectivity (39). Here, myelin content was normalized
by region volume, meaning that our finding of correlation between
a structural network and functional connectivity is not related
trivially to the previous finding on cortical thickness. However, the
question of how myelin density relates to cortical thickness re-
mains, and this should be the topic of future work.
Given that the primary role of myelin is to increase the speed at

which nerve impulses travel through neuronal pathways, it is in-
tuitive that cortical myelination is shaped to support functional
networks because this will act to maximize the efficiency of their
formation. More speculative, however, is the process by which this
structural support network evolves. Given that electrical activity
on some particular pathway induces myelination, and given that
RSNs emerge as early as the third trimester of gestation (40), it is
tempting to argue that even before birth myeloarchitecture is
being shaped by functional connectivity. Of course, the resulting
structural changes would, in turn, refine functional connections
and so the likelihood is that changes in myeloarchitecture and
functional networks are linked intimately. This notion is supported
by the fact that both myelination and functional connectivity
change on a similar timescale throughout neurodevelopment. In
the present study, our data preclude direct investigation of this
interplay between structure and function. However, our study does

pave the way for new investigations of this process via longitudinal
studies of development. In addition, studies investigating how
changing behavior alters both structure and function are becoming
popular. This idea is not new (41), and recent evidence (42)
suggests that both white-matter and gray-matter structure changes,
even on a relatively fast timescale, when learning new skills. This
research area would benefit from the use of tools presented here.
Perhaps more importantly, our results have implications for future
studies of disorders, in particular those involving demyelination or
dysconnectivity. For example, gray-matter atrophy, lesions, and
demyelination are a better correlate of physical disability and
cognitive decline in multiple sclerosis than white-matter lesion
load (43). In addition, inefficiency of functional networks has also
been reported (39) in this disease. Our method might offer a
means to link these findings. Similarly, severe psychosis has been
linked with dysconnectivity (44), and recent work has begun to
relate this to structural deficiencies (45). Once again, our work
might offer a framework to link these abnormalities.

Conclusion
We have probed the relationship between gray-matter myelination
and electrophysiological networks, showing a significant correlation.
This relationship is strongest for networks mediated by beta oscilla-
tions but becomes stronger when integrating across frequency bands,
suggesting that myeloarchitecture supports connectivity across all
bands. Our study sheds light on the way in which cortical micro-
structure supports functional networks, the latter being mediated by
neural oscillations. Further, it paves the way for future investigations
of the structure/function relationship and its breakdown in pathology.

Methods
Myelination and Structural Covariance. Participants gave written informed
consent and ethical approval was granted by the University of Nottingham
Medical School Research Ethics Committee. MRI data were collected using a
Phillips Achieva 7T system. A phase-sensitive inversion recovery T1 weighted
image was acquired and used for MEG coregistration. MT data were obtained
from z-spectra acquired using an MT-TFE sequence (46). MT imaging provides
contrast based on the exchange of magnetization between free water and
protons bound in macromolecules. Although it is likely that no one-to-one
relationship exists, experimental and human studies have shown that MT is
highly correlated with myelination, which is probably related to the high
fraction of water in close proximity to myelin macromolecules. The procedure
for extracting MT data from our imaging sequence has been described else-
where (47). Briefly, z-spectra were corrected for B0 variation and fitted to a
database of simulated spectra to extract myelination maps. To investigate
structural covariation of myelin within the AAL regions, gray-matter-masked
MT data were registered to the AAL atlas and a meanMT value was calculated
for each region, for each participant. Due to confounding factors such as
scanner drift, themodal value for each individual’s MT data was regressed from
that individual’s regional values (7) (Fig. S3). Pearson correlation, measured
across subjects, was used to quantify the relationship between MT values
measured in AAL region pairs (Fig. 1C). These correlation values form elements
of the structural matrix in Fig. 1D. An average MT map (Fig. 1A) was also
generated by averaging regional MT values over participants. The relationship
between myelination and handedness was probed via correlation between MT
and handedness score.

Resting-State MEG: Connectivity Analysis. Three hundred seconds of eyes-open
resting-state MEG data were acquired using a 275-channel CTF MEG system op-
erating in third-order synthetic gradiometer configuration (sampling frequency of
1,200 Hz). Three head position indicator coils were placed at fiducial locations on
the subject’s head and energized to facilitate continuous tracking of head loca-
tion. Before acquisition, a 3D head digitization procedure was completed. Cor-
egistration between MEG system geometry and individual brain anatomy was
achieved by matching the digitized head surface to the equivalent surface
extracted from an anatomical MRI. Functional connectivity was calculated be-
tween AAL regions. A scalar beamformer was used to obtain a single MEG signal
representative of each region. These regional signals were frequency-filtered to
the bands of interest and the confound of signal leakagemitigated using pairwise
orthogonalization (48). The magnitude of the analytic signal, computed via a
Hilbert transform, was used to generate the amplitude envelope of oscillations,
for each regional time course in all frequency bands. Pearson correlation was then
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computed between envelopes for each region pair. In this way we generated a
single adjacency matrix for each subject, and frequency band, representing
whole-brain connectivity. These matrices were averaged over subjects.

The Relationship Between MT and MEG. We measured correlation (r2) between
the structural covariance matrix (Fig. 1D) and the group-averaged MEG networks
(Fig. 2). To test statistically whether these correlation values were significant, we
used a permutation test. A set of “pseudo-MEG matrices” were generated, each
having spatial properties similar to the real matrices, but crucially they were not

based on genuine data (SI Methods and Figs. S4 and S5). This approach accounts
for the inherent spatial smoothness in the MEG-derived networks (SI Methods).
Correlation between the structural matrix and 10,000 pseudomatrices yielded an
empirical null distribution, and comparison of the genuine r2 value with the null
distribution allowed computation of a P value.
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