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and recall differences in multiple sclerosis
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Cognitive difficulties are common and a key concern for people with multiple sclerosis. Advancing knowledge of the role of white

matter pathology in multiple sclerosis-related cognitive impairment is essential as both occur early in the disease with implications for

early intervention. Consequently, this cross-sectional study asked whether quantifying the relationships between lesions and specific

white matter structures could better explain co-existing cognitive differences than whole brain imaging measures. Forty participants

with relapse-onset multiple sclerosis underwent cognitive testing and MRI at 3 Tesla. They were classified as cognitively impaired

(n¼ 24) or unimpaired (n¼16) and differed across verbal fluency, learning and recall tasks corrected for intelligence and education

(corrected P-values¼ 0.007–0.04). The relationships between lesions and white matter were characterized across six measures: con-

ventional voxel-based T2 lesion load, whole brain tractogram load (lesioned volume/whole tractogram volume), whole bundle vol-

ume, bundle load (lesioned volume/whole bundle volume), Tractometry (diffusion-tensor and high angular resolution diffusion meas-

ures sampled from all bundle streamlines) and lesionometry (diffusion measures sampled from streamlines traversing lesions only).

The tract-specific measures were extracted from corpus callosum segments (genu and isthmus), striato-prefrontal and -parietal path-

ways, and the superior longitudinal fasciculi (sections I, II and III). White matter measure-task associations demonstrating at least

moderate evidence against the null hypothesis (Bayes Factor threshold < 0.2) were examined using independent t-tests and covariate

analyses (significance level P< 0.05). Tract-specific measures were significant predictors (all P-values < 0.05) of task-specific clinical

scores and diminished the significant effect of group as a categorical predictor in Story Recall (isthmus bundle load), Figure Recall

(right striato-parietal lesionometry) and Design Learning (left superior longitudinal fasciculus III volume). Lesion load explained the

difference in List Learning, whereas Letter Fluency was not associated with any of the imaging measures. Overall, tract-specific meas-

ures outperformed the global lesion and tractogram load measures. Variation in regional lesion burden translated to group differences

in tract-specific measures, which in turn, attenuated differences in individual cognitive tasks. The structural differences converged in

temporo-parietal regions with particular influence on tasks requiring visuospatial-constructional processing. We highlight that meas-

ures quantifying the relationships between tract-specific structure and multiple sclerosis lesions uncovered associations with cognition

masked by overall tract volumes and global lesion and tractogram loads. These tract-specific white matter quantifications show prom-

ise for elucidating the relationships between neuropathology and cognition in multiple sclerosis.
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Abbreviations: AFD ¼ apparent fibre density; BF ¼ Bayes factor; FA ¼ fractional anisotropy; FLAIR ¼ fluid attenuated inversion

recovery; IQ ¼ intelligence quotient; LES ¼ large effect size; MD ¼mean diffusivity; MES ¼moderate effect size; MPRAGE ¼mag-

netization prepared rapid gradient echo; MSIS29 ¼Multiple Sclerosis Impact Scale 29; NuFO ¼ number of fibre orientations; RD

¼ radial diffusivity; RISH ¼ rotationally invariant spherical harmonics; SES ¼ small effect size; SLF ¼ superior longitudinal fascic-

ulus; TE/TI/TR ¼ echo time/inversion time/repetition time

Introduction
Cognitive impairment affects 50–75% of people with

multiple sclerosis1–3 and is associated with adverse clinic-

al outcomes and reduced quality of life.4–6 Whilst cogni-

tive impairment in multiple sclerosis has been subject to

increasing attention in the literature over recent decades,

more work is needed to characterize cognitive phenotypes

and particularly their relationships to neuropathology.6–8

Indeed, uncovering the precise neurobiological bases of

cognitive deficits has been identified as a key research

priority in multiple sclerosis.8

Cognitive impairment in multiple sclerosis is typically

characterized by impaired information processing speed

and memory, but a variety of tasks across many cognitive

domains have demonstrated differences in multiple

sclerosis cohorts compared to healthy controls.1,2,6–10

Even meta-analyses comprising large numbers of cases do

not always agree on which types of tasks and/or

cognitive domains demonstrate the most sensitivity in dis-

criminating multiple sclerosis-related cognitive impair-

ment.9,11,12 The variation in cognitive profiles7,12,13

perhaps mirrors the wide variation in the nature and lo-

cation of neuropathology between individuals.7,14,15

However, the lack of agreed methodology for cognitive

testing and classification of cognitive impairment are key

challenges in unravelling the pathological correlates of

cognitive impairment in multiple sclerosis.8

Another challenge is posed by the varied approaches to

MRI, which is currently the best biomarker for both

diagnosing and monitoring disease activity in multiple

sclerosis.16 In keeping with the clinico-radiological
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paradox,17 traditional white matter measures such as T1

or T2 lesion loads correlate only modestly with cognition

in multiple sclerosis18 and have not always performed

well in predicting specific cognitive functions.19,20 While

global measures such as lesion loads are valuable in clin-

ical trials, these are not expected to explain inter-individ-

ual cognitive differences.18 Imaging approaches that

uncover regional or structure-specific variation in path-

ology may perform better at providing evidence for clinic-

al–pathological correlation.21 As the locus of pathology

in the early stages of multiple sclerosis is predominantly

in white matter22–24 with cognitive deficits also apparent

early in the disease,3,5,25 white matter pathology may be

a driver of cognitive deficits amenable to targeted re-

habilitative or restorative interventions.8,26–28

Studies investigating the relevance of white matter path-

ology to cognition in multiple sclerosis have demonstrated

the importance of lesion location,29 abnormalities in ‘dif-

fusely abnormal’ and ‘normal-appearing’ white matter,7,30

and regional as well as tract-based microstructural abnor-

malities.31–35 Where diffusion-weighted imaging has been

used, conventional diffusion-tensor measures such as frac-

tional anisotropy (FA) predominate, with voxel-based

analysis (e.g. tract-based spatial statistics) often

employed.33 As demonstrated by recent approaches to

tractography,21,34–38 more advanced approaches allow for

enhanced anatomical and microstructural specificity.39–44

Combining state-of-the-art diffusion-MRI methods with

examination of specific white matter structures and cogni-

tive constructs (rather than composites from multiple cog-

nitive domains) presents a novel opportunity for detailed

characterization of the relationships between white matter

structure and cognition in multiple sclerosis.8,18

We aimed to address these unmet needs by investigating

whether individual differences in tract-specific measures can

account for individual differences in performance on specif-

ic cognitive tasks between people with multiple sclerosis

who are classified as cognitively impaired or unimpaired.

We used novel methods45 to characterize individual tract

macro- and microstructure and examined their perform-

ance, versus more global measures (e.g. conventional T2-

weighted lesion load), in explaining cognitive group differ-

ences. We hypothesize that tract-specific volumetric and/or

microstructural measures will perform better than the glo-

bal imaging measures in explaining specific cognitive differ-

ences. Furthermore, we hypothesize that white matter

measures differentially affected by lesion burden between

groups may show some relative specificity in explaining

performances in individual cognitive tasks.

Materials and methods

Estimate of sample size

The sample was derived from a larger clinical study into

long-standing multiple sclerosis46 and a priori sample size

was calculated from data (n¼ 26) involving a similarly

defined cohort.47 Bester et al.47 examined tract-specific

microstructural differences and compared those cognitive-

ly impaired (n¼ 10) and cognitively preserved (n¼ 16)

using the same method for classifying cognitive impair-

ment as applied in Tallantyre et al.46 They reported sig-

nificant differences between groups in FA (P¼ 0.02) and

mean diffusivity (MD, P¼ 0.01) within the splenium of

the corpus callosum.47 Using the published means and

standard deviations, the effect sizes were calculated,

which were large (FA, gHedges ¼ 1.2 and MD, gHedges ¼
1.3) with the impaired group demonstrating lower FA

and higher MD.

These data were used to estimate sample size (with

G*Power; www.gpower.hhu.de) for using a t-test to de-

tect a white matter structural difference between cogni-

tively impaired or unimpaired groups. Using the

parameters of power 0.8, the smaller effect size 1.2, and

alpha 0.05 for a two-tailed hypothesis, the minimum

sample size derived for each group was n¼ 12. Similarly,

the lower correlation (r¼ 0.52, P¼ 0.008) between corpus

callosum (genu) FA and a cognitive task (verbal learning)

reported by Bester et al. was used to estimate the sample

size needed to examine structure-cognitive task correla-

tions. Using the same power and alpha as above, the

minimum whole sample size needed was n¼ 26.

Participants

From 60 people with longstanding relapse-onset multiple

sclerosis,46 40 consented to undergo MRI within

12 months of their clinical assessment. Problematic clinic-

al confounds (e.g. fatigue, depression, drug effects) were

minimized by recruiting participants who demonstrated

relatively low levels of disability and had never received

disease modifying treatments.48–51 The study was

approved by the Wales Research Ethics Committee 2 (16/

WA/0051) and is in keeping with the principles of the

Declaration of Helsinki.

MRI acquisition

All scanning was performed using a Siemens PRISMA 3T

system using a 32-channel receive-only radiofrequency

head coil. All participants underwent the following

sequences: (i) 3D T2 SPACE sequence52 where the flip

angles of the train of refocusing pulses are optimized to

increase the useable echo train duration (TR/TE: 3200/

408 ms; voxel size: 1� 1 � 1 mm3); (ii) 3D SPACE-

FLAIR sequence (TR/TE: 5000/388 ms; TI: 1800 ms;

voxel size: 1� 1 � 1 mm3); (iii) 3D T1 MPRAGE (TR/

TE: 2300/3 ms; flip angle: 9�; voxel size: 1� 1 � 1

mm3); and (iv) high angular resolution diffusion imaging

(HARDI; 14 b¼ 0 images; 30 directions at b¼ 1200 s/

mm2; 60 directions at b¼ 2400 s/mm2; TR/TE: 9400/

70 ms; voxel size: 2� 2 � 2 mm3).
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Data pre-processing and derivation
of white matter measures

Brain masks were extracted from the fluid attenuated in-

version recovery (FLAIR) images using FSL bet.53 White

matter lesion masks were semi-automatically delineated

using 3D T2 and FLAIR images by a trained technician

(blinded to the purpose of the study) using NeuROI

(www.nottingham.ac.uk/research/groups/clinicalneurology/

neuroi.aspx).

Diffusion data were denoised54 and corrected for sub-

ject motion and distortion.55 To align anatomical images

with diffusion data, the FLAIR images were warped to

the upsampled b¼ 0 images from the diffusion MRI data-

set using ANTs.56 The same transformation matrix was

then applied to the brain mask and lesion mask.

Diffusion tensors were generated using iteratively

weighted least squares in MRtrix57 using only the

b¼ 1200 s/mm2 data, followed by the derivation of FA,

MD and radial diffusivity (RD) maps (Fig. 1). In add-

ition, the total apparent fibre density (AFD) was derived

from fibre orientation distribution functions58,59 obtained

from multi-shell multi-tissue constrained spherical decon-

volution39 using a single group response function. The

number of fibre orientations (NuFO) in each voxel was

also extracted.60 Finally, rotationally invariant spherical

harmonics (RISH) features61 were derived for each sub-

ject using the b¼ 2400 s/mm2 shell (0th and 2nd orders

only, RISH0 and RISH2, respectively). Briefly, RISH fea-

tures capture the signal energy at a given shell and there-

fore, the higher the b-value, the more specific to intra-

axonal space the RISH features are. Both orders capture

different microstructural tissue properties; RISH0 captures

the isotropic component of the signal, while RISH2 cap-

tures the variance in the signal, and therefore deviations

from isotropy.

For each dataset, automated white matter tract segmen-

tation was performed using TractSeg42 to obtain the fol-

lowing bilateral bundles of interest (Fig. 2): Corpus

callosum (TractSeg sections 2 [genu] and 6 [isthmus]),

striato-prefrontal pathway, striato-parietal pathway and

superior longitudinal fasciculus (SLF, TractSeg sections

I–III). These bundles were chosen in line with the white

matter regions often associated with neuropathological

burden in multiple sclerosis,7,37,62 the types of fibres

affected by its pathology,35,63,64 and to achieve some

coverage of anterior and posterior regions across commis-

sural, projection, and association pathways. For each

bundle, 2000 streamlines were generated. The microstruc-

tural measures were then averaged in each bundle. A

whole brain tractogram was also derived for further ana-

lysis by concatenating all TractSeg outputs.

Next, white matter measures were derived (Fig. 3)

according to Chamberland et al.45 These include (i) con-

ventional T2 lesion load; (ii) whole brain tractogram

load; and (iii) bundle load. In addition, (iv) a lesion-spe-

cific approach to the Tractometry43,65 framework was

employed, where the diffusion MRI measures are sampled

only within the portion of streamlines traversing a lesion.

To reduce the high dimensionality of the data, two

Tractometry factors were created from the tract-specific

microstructural measures,66 one derived from whole bun-

dle streamlines and the other from the streamlines

affected by lesions only (henceforth referred to as the

lesionometry factor; Fig. 3D).

Figure 1 Qualitative overview of the anatomical and diffusion maps derived for each subject. RISH features (order 0 and 2)

were derived using the highest b-value and represent the isotropic and anisotropic energy, respectively. Diffusion-tensor measures (RD, MD

and FA) were derived using the lowest b-value. HARDI measures like the apparent fibre density (AFD) and the number of unique fibre

orientations per voxel (NuFO) were derived from constrained spherical deconvolution. Hyperintense T2 lesions (FLAIR) are highlighted

across the maps (purple outline).
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Behavioural measures

The sample was characterized using typical demographics,

disease duration, years in education, Test of Premorbid

Functioning UK68 (to estimate intelligence quotient [IQ]);

Expanded Disability Status Scale69 (EDSS); Fatigue

Assessment Instrument70 (FAI, 11-item severity scale);

Multiple Sclerosis Impact Scale 2971 (MSIS29); and the

Beck Depression Inventory II72 (BDI II).

The cognitive battery has been previously detailed46

and the same classification of cognitive impairment was

applied (�2 test scores �5th percentile against test

normative data). However, only a subset of tasks

from the original battery were considered for inclusion;

those testing cognitive domains often impaired in

multiple sclerosis (i.e. information processing speed,

working memory, learning, recall, language and cognitive

flexibility)7:

• The Paced Auditory Serial Addition Test73 (300

version);
• Letter-Number Sequencing and Coding (Wechsler

Adult Intelligence Scale IV)74;
• Story (immediate) Recall, Figure (immediate) Recall,

List Learning (trials 1–5), Design Learning (trials 1–5),

and Speed of Information Processing adjusted for

motor speed (BIRT Memory and Information

Processing Battery)75; and

Figure 2 Tractography results in a single participant. Top row: Coronal view of the FLAIR image with lesions highlighted (red circle).

On the right, 3D oblique view of the corona radiata and the superior longitudinal fasciculi in the vicinity of the lesion. (A) Fibre orientation

distribution functions (fODFs) of the centrum semiovale (red arrow) shows continuity inside and around the lesion, suggesting preserved

structural organization.67 On the right, multiple major pathways intersect and traverse the lesion (CST, corticospinal tract; Cg, Cingulum; CC,

corpus callosum; SLF, superior longitudinal fasciculus). (B) A lesion adjacent to the striato-prefrontal connection (ST_PREF) shows preserved

fibre orientations (red arrow) allowing reconstruction of the SLF-III pathway.
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• Verbal Fluency (Letter and Category) and Colour-

Word Interference Test Conditions 3 and 4 (Delis-

Kaplan Executive Function System).77

To examine if cognitive differences can be explained by

variation in structural white matter properties, only those

cognitive tasks demonstrating significant (P< 0.05) differ-

ences between cognitively impaired and unimpaired

groups following corrections for estimated IQ and years

in education were included. The cognitive measures

retained were Story Recall, Figure Recall, List Learning,

Design Learning and Letter Fluency.

Statistical analyses

All statistical analyses were completed using SPSS

Statistics 26. The raw scores from the cognitive measures

were used across analyses. Effect sizes are presented as d

for t-tests, r for correlations, and gp2 for analyses of co-

variance and interpreted as large (LES), medium (MES)

or small (SES).78

Tractometry factors

For the whole bundle Tractometry factors, the mean FA,

MD, RD, AFD, RISH0, RISH2 and NuFO values under-

went principal component analysis.66 The measures were

standardized, the factors derived based on eigenvalues

greater than 1, and any small coefficients were sup-

pressed (absolute value below 0.3). The same method

was used to create the lesionometry factors, but as

derived from the within-bundle streamlines affected by

lesions only (Fig. 3D). To ensure the data were suitable

for principal component analysis, the Kaiser–Meyer–

Olkin Measure of Sampling Adequacy (all �0.7) and

Bartlett’s Test of Sphericity (all P < 0.0005) were

applied.

Inclusion of cognitive measures

The cognitive measures considered for inclusion were com-

pared between those cognitively impaired (n¼ 24) and

those unimpaired (n¼ 16) using independent two-tailed t-

tests. The tasks differing between groups (P< 0.05) then

underwent corrections for estimated IQ and years of educa-

tion using analyses of covariance. The tasks still demon-

strating a significant difference (P< 0.05) between groups

following these corrections were included.

Primary analyses

The white matter measures from the bilateral tracts

included were reduced into single measures by averaging

the left and right values. Consequently, there were seven

bundles (corpus callosum sections 2 and 6, striato-pre-

frontal pathway, striato-parietal pathway, and SLF sec-

tions I, II and III) with four white matter measures

associated with each tract (bundle volume, bundle load,

whole bundle Tractometry factor and lesionometry fac-

tor). These white matter measures alongside lesion load

and tractogram load were correlated against each task

resulting in 30 correlations per task. Owing to the num-

ber of comparisons, whole sample (n¼ 40) Bayesian

Pearson correlation was used to derive Bayes factors

(BFs) to indicate the degree of evidence against the null

hypothesis for each correlation (tolerance ¼ 0.0001; max-

imum iterations ¼ 2000; Monte Carlo samples ¼ 10

000). At least moderate evidence (BF 0.1–0.33) for the al-

ternative hypothesis was desired with the threshold for

inclusion in subsequent analyses set to BF 0.2 so that

any relationships would be closer to demonstrating strong

(BF < 0.1), as opposed to anecdotal (BF > 0.33), evi-

dence for the alternative hypothesis (note in SPSS evi-

dence for null hypothesis are values >1 and evidence for

alternative hypothesis are values <1).79 Only the surviv-

ing relationships per task were examined further to

Figure 3 Graphical overview of the white matter measures. (A) conventional voxel-based lesion load (normalized by head size), (B)

whole-brain tractogram load, whereby the volume of white matter intersecting with lesions is used as the numerator, (C) bundle load, which

is the volume intersecting lesions divided by entire volume (example bundle: arcuate fasciculus) and (D) lesion-based Tractometry

(lesionometry), where diffusion-MRI measures are sampled along the entire length of the streamlines that intersect lesions. Measures A–C

range from 0 (0% interaction between lesions and white matter) to 1 (100% interaction between lesions and white matter). Visualization was

performed using FiberNavigator.76
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understand the nature of the relationships and to deter-

mine if these accounted for the task differences.

Analyses of covariance were used to gauge the impact of

the retained white matter measures on the task-specific

group differences. In each model, the cognitive task was

the dependent variable, group the independent variable,

and estimated IQ and years of education were covariates

alongside the task-specific white matter measures. As the

focus was on covariate effects, any heterogeneity of regres-

sion slopes or group-covariate interactions were of interest.

The aim was to determine if the white matter measures

(covariates) would diminish the effect of group as a signifi-

cant categorical predictor of task scores. The significance

level adopted for the influence of the covariates and for

the effect of group was P< 0.05. In addition to graphical

linearity checks, the Levene’s Test of Equality of Error

Variances was used to gauge any violations of the assump-

tion of homogeneity of variances (P> 0.05), and covariate

collinearity checks (r< 0.8) were applied when individual

covariate effects were examined. Supplemental analyses

conducted to elucidate the results included bivariate

Pearson’s correlations and independent t-tests.

Data availability

TractSeg is available at github.com/MIC-DKFZ/TractSeg.

MRtrix is available at www.mrtrix.org/. FiberNavigator

is available at github.com/chamberm/fibernavigator. The

lesionometry toolbox will be available upon publication

at github.com/chamberm/Lesionometry. The anonymized

data and code used in the reported analyses are available

on reasonable request from the first author.

Results

Sample

The 40 participants were 27 women and 13 men, mean

age 58 years (range 44–78) and mean disease duration

27 years (range 15–47). Median Expanded Disability

Status Scale at clinical assessment was 2.5 (range 0–6.0).

Sample characteristics by group and whether these dif-

fered statistically are presented in Table 1.

Whole brain lesion load was significantly higher in the

cognitively impaired group (Table 1) with right hemi-

sphere lesion load particularly driving the difference

[t(31.38) ¼ 2.651, P¼ 0.012, d¼ 0.856, LES versus left

hemisphere t(36.75) ¼ 1.968, P¼ 0.057, d¼ 0.635, MES]

between groups. The greatest lesion frequency difference

appeared to localize to the right temporoparietal region

(Fig. 4).

Primary analyses

The datasets were complete across all tasks (n¼ 40) ex-

cept Story Recall in which one datapoint was missing

(n¼ 39).

Letter fluency

The Letter Fluency score difference between groups was

moderate following corrections for estimated IQ and

years in education [F(1,36) ¼ 5.147, P¼ 0.029, gp
2 ¼

0.125]. However, as all white matter measure correlations

demonstrated BFs in favour of the null hypothesis (BFs

ranging from 2.4 to 8.1), no further analyses were con-

ducted. These results suggest the white matter measures

included did not account for the difference in Letter

Fluency scores between groups.

Story recall

The Story Recall score difference between groups was

large following corrections for estimated IQ and years in

education [F(1,35) ¼ 6.359, P¼ 0.016, gp
2 ¼ 0.154]. Of

the white matter measures examined at whole sample

level, only the isthmus bundle load correlation (r ¼
�0.448, BF¼ 0.138, P¼ 0.004, MES) reached the BF

threshold (see Fig. 5A for bundle and tractogram load

illustrations and 5B for correlation scatterplot). When

entered as a covariate in an analysis of covariance

Table 1 Sample characteristics by group with P-values (*<0.05) from independent t-tests except the Chi-Square for

the sex ratios.

Characteristic Mean (SD) Cognitively impaired N 5 24 Not impaired N 5 16 P-value

Age (years) 56.75 (8.45) 60.06 (7.39) 0.210

Sex (number of F:M) 15:9 12:4 0.630

Estimated IQ 105.86 (10.99) 113.37 (10.44) 0.037*

Years of education 14.71 (2.48) 16.06 (2.86) 0.120

Disease duration (years) 26.88 (7.09) 27.13 (9.37) 0.924

Disability status (EDSS) 2.85 (1.35) 3.00 (1.32) 0.737

Disease impact (MSIS29) 54.33 (25.11) 54.19 (21.98) 0.985

Depression (BDI II) 9.29 (10.41) 13.25 (12.98) 0.293

Fatigue severity (FAI) 3.40 (1.89) 3.74 (2.29) 0.604

Lesion load 0.55% (0.53%) 0.25% (0.23%) 0.018*

Tractogram load 47.2% (24.5%) 34.1% (22.9%) 0.096

Note. Estimated IQ and years of education were corrected for across analyses. IQ score (m¼ 100; SD¼ 15); EDSS <4 (low physical disability); MSIS29 (the higher the score, the

greater the impact—score range 29–145); BDI II (scores 0–13 indicate minimal depression); Fatigue Severity <4 (unproblematic fatigue).
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Figure 5 Examples of lesion interactions with white matter measures and key task correlations. (A) Examples of lesion

interactions with tractogram load and bundle load. Top: Participant from the cognitively unimpaired group with 5% of their tractogram, and

3% of their isthmus bundle, affected by lesions. Below: Participant from the cognitively impaired group with 77% of their tractogram, and 95%

of their isthmus, affected by lesions. The standard colour convention (i.e. red, green, and blue represent left-right, anterior-posterior, and

inferior-superior orientations, respectively) is applied to the middle tractograms. Normalized FLAIR was used to colour-code the isthmus

bundles on the right (0–1). (B) The key task-white matter measure correlations. Values from the cognitively impaired group in pink and from

the unimpaired group, in purple. R, right; L, left.

Figure 4 Illustrations of lesion density and bundle-specific lesion frequencies. Left: Density map of all white matter lesions across

groups (cognitively unimpaired, cognitively impaired, and difference between groups). For both groups, the map shows voxels where a lesion

was present in at least one of the participants. A higher number of lesions occurred within the temporoparietal region. Right: Lesion

frequencies for the extracted bundles of interest, with the highest rates within the corpus callosum segments. CC, corpus callosum; ST_PREF,

striato-prefrontal pathway; ST_PAR, striato-parietal pathway; SLF, superior longitudinal fasciculus.
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alongside estimated IQ and years of education, it was a

unique predictor [F(1,34) ¼ 5.628, P¼ 0.023, gp
2 ¼

0.142, LES] and rendered the large difference in scores

between groups non-significant [F(1,34) ¼ 2.589,

P¼ 0.117, gp
2 ¼ 0.071, MES]. The model as a whole

accounted for 35.6% of variance in Story Recall scores

[F(4,34) ¼ 4.702, P¼ 0.004, gp
2 ¼ 0.356, LES].

There was no group-isthmus bundle load interaction

(P¼ 0.977) with the correlations with Story Recall similar

across groups (impaired: r ¼ �0.344, P¼ 0.108; unim-

paired: r ¼ �0.329, P¼ 0.214). However, isthmus bundle

load was significantly higher in the cognitively impaired

group compared to the unimpaired group [impaired

mean: 0.698, unimpaired mean: 0.454; t(38) ¼ 2.649,

p¼ 0.012, d¼ 0.855, LES].

List learning

The effect size for the List Learning score difference be-

tween groups following corrections for estimated IQ and

years in education was moderate [F(1,36) ¼ 5.367,

P¼ 0.026, gp
2 ¼ 0.130]. The only correlation to reach

the BF threshold was with lesion load (r ¼ �0.463,

BF¼ 0.091, P¼ 0.003, MES). When entered as a covari-

ate alongside estimated IQ and years of education, it was

a unique predictor [F(1,35) ¼ 7.463, P¼ 0.010, gp
2 ¼

0.176, LES] and mitigated the score difference between

groups [F(1,35) ¼ 2.484, P¼ 0.124, gp
2 ¼ 0.066, MES].

The model as a whole accounted for 29.5% of variance

in List Learning scores [F(4,35) ¼ 3.655, P¼ 0.014, gp
2

¼ 0.295, LES]. While the whole sample correlation was

influenced by lesion load outliers from the cognitively

impaired group (Fig. 5B), there were no outliers when le-

sion load values were examined by group.

There was no group-lesion load interaction (P¼ 0.290)

with the correlations with List Learning similar across

groups (impaired: r ¼ �0.420, P¼ 0.041; unimpaired: r

¼ �0.424, P¼ 0.102). Lesion load was, however, higher

in the cognitively impaired group than in the unimpaired

(Table 1).

Figure recall

The Figure Recall score difference between groups was

large following corrections for estimated IQ and years in

education [F(1,36) ¼ 8.084, P¼ 0.007, gp
2 ¼ 0.183].

Multiple correlations reached the BF threshold (Table 2).

Despite being significant predictors of variance in Figure

Recall scores (white matter measure effects P< 0.05), le-

sion load, tractogram load, the SLF II measures, and the

striato-prefrontal measures did not attenuate the signifi-

cant score difference between groups (all effects of group

remained P< 0.05). The bilaterally averaged SLF II and

striato-prefrontal measures did not mask any significant

unilateral differences between groups in these measures.

In contrast, isthmus bundle load did mitigate the sig-

nificant difference in Figure Recall scores between groups

[F(1,35) ¼ 3.963, P¼ 0.054, gp
2 ¼ 0.102, MES], but did

not explain unique variance in scores alongside estimated

IQ and years in education (P¼ 0.054). However, there

was a group-isthmus bundle load interaction with both

the bundle load and correlations differing between groups

(Table 2). The model as a whole accounted for 31.2% of

variance in Figure Recall scores [F(4,35) ¼ 3.962,

P¼ 0.009, gp
2 ¼ 0.312, LES].

Table 2 Figure Recall-white matter measure Pearson correlations (r) surviving Bayes factor threshold <0.2 with

group-measure differences (independent t-values) and interactions (F-values) presented.

Figure Recall

Measure Sample

(n 5 40) r

Bayes

factor BF

Cognition

impaired (n 5 24) r

Cognition

intact (n 5 16) r

Group measure

difference t

Group measure

interaction F

Lesion Load �0.509** 0.030 �0.452* �0.272 2.481* 0.066

Tractogram L �0.439** 0.152 �0.487* �0.044 1.709 2.999

Isthmus BL �0.456** 0.106 �0.522** 0.022 2.649* 5.546*

SLF I BL �0.446** 0.131 �0.523** �0.054 1.348 3.470

SLF I Tmtry 0.428** 0.188 0.489* 0.033 �1.052 2.024

SLF I Lmtry 0.477** 0.067 0.538** �0.003 �1.296 2.609

SLF II Tmtry 0.443** 0.139 0.505* �0.017 �1.439 3.000

SLF II Lmtry 0.461** 0.095 0.522** �0.086 �1.690 3.574

St-Pref BL �0.507** 0.032 �0.619** �0.014 1.323 5.603*

St-Pref Tmtry 0.488** 0.051 0.640** �0.181 �0.816 6.723*

St-Pref Lmtry 0.451** 0.119 0.640** �0.468 �0.818 10.836**

St-Par BL �0.472** 0.074 �0.497* �0.094 2.052* 2.772

St-Par Tmtry 0.520** 0.023 0.561** �0.042 �1.905 2.656

St-Par Lmtry 0.538*** 0.014 0.556** 0.147 �2.055* 2.440

Note. The counterintuitive negative correlations of the striato-prefrontal Tractometry and lesionometry measures in the cognitively unimpaired, and the striato-prefrontal interac-

tions, were owing to two cases (these were not outliers but when excluded the interactions disappeared). BL, bundle load; L, load; Lmtry, lesionometry; SLF, superior longitudinal

fasciculus; St-Pref, striato-prefrontal pathway; St-Par, striato-parietal pathway; Tmtry, Tractometry.

*P< 0.05,

**P< 0.01,

***P< 0.0005.
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The SLF I measures were all significant predictors

(P< 0.05), but did not eradicate the group difference in

scores until inputted together [effect of group F(1,33) ¼
3.987, P¼ 0.054, gp

2 ¼ 0.108, MES]. These measures

did not mask any significant unilateral differences be-

tween groups in these measures. Similarly, the bilaterally

averaged striato-parietal measures (Table 2) were signifi-

cant predictors (P< 0.05), but did not attenuate the effect

of group until inputted together [F(1,33) ¼ 3.988,

P¼ 0.054, gp
2 ¼ 0.108, MES]. However, both striato-

parietal bundle load (impaired mean: 0.507; unimpaired

mean: 0.324) and lesionometry (impaired mean: �0.244;

unimpaired mean: 0.367) differed between groups

(Table 2). These differences were underpinned by signifi-

cant unilateral differences in right striato-parietal bundle

load [impaired mean: 0.526, unimpaired mean: 0.318;

t(38) ¼ 2.276, P¼ 0.029, d¼ 0.735, MES] and lesionom-

etry [impaired mean: �0.276, unimpaired mean: 0.415;

t(38) ¼ �2.253, P¼ 0.030, d¼ 0.727, MES]. While right

striato-parietal bundle load (alongside estimated IQ and

years in education) did not attenuate the significant effect

of group (p¼ 0.047), its lesionometry did [F(1,35) ¼
3.679, P¼ 0.063, gp

2 ¼ 0.095, MES]. Right striato-par-

ietal lesionometry was the only measure that accounted

for both unique variance in Figure Recall scores [F(1,35)

¼ 10.025, P¼ 0.003, gp
2 ¼ 0.223, LES] and the signifi-

cant group difference in scores (correlation with task

r¼ 0.573, P< 0.0005, LES, n¼ 40; Fig. 5B). This model

as a whole accounted for 40.4% of variance in Figure

Recall scores [F(4,35) ¼ 5.931, P¼ 0.001, gp
2 ¼ 0.404,

LES].

As tract-specific microstructural measures were mean-

ingful here, these measures are provided from the whole

right striato-parietal bundle and its lesionometry. With

the former, the groups differed significantly on two meas-

ures, MD and RD (Table 3). Regarding the latter, the

groups differed on four measures, MD, RD, AFD, and

RISH0. All differences were in the anticipated directions

i.e. MD and RD higher, and AFD and RISH0 lower, in

the cognitively impaired group. The whole bundle factor

loadings were as follows: RD (�0.987), RISH0 (0.982),

MD (�0.960), AFD (0.955), RISH2 (0.937), NuFO

(0.871) and FA (0.847). For the lesionometry factor, RD

(�0.987), RISH0 (0.978), AFD (0.954) and MD

(�0.950) similarly demonstrated the highest loadings fol-

lowed by RISH2 (0.930), FA (0.831) and NuFO (0.773).

Design Learning

The Design Learning score difference between groups was

moderate following corrections for estimated IQ and

years in education [F(1,36) ¼ 4.549, P¼ 0.040, gp
2 ¼

0.112]. The correlations that reached the BF threshold

were with genu bundle volume (r¼ 0.486, BF¼ 0.054,

P¼ 0.001, MES), SLF III bundle volume (r¼ 0.602,

BF¼ 0.002, P< 0.0005, LES), and striato-prefrontal bun-

dle volume (r¼ 0.477, BF¼ 0.067, P¼ 0.002, MES).

When entered alongside estimated IQ and years in educa-

tion as covariates, neither genu nor striato-prefrontal

bundle volumes (despite being significant predictors

P< 0.05) accounted for the significant difference in scores

between groups (effect of group P¼ 0.024 and P¼ 0.015,

respectively). The groups did not differ in these white

matter measures, but the whole sample correlations again

appeared driven by the cognitively impaired group (genu

impaired: r¼ 0.623, P¼ 0.001, unimpaired: r¼ 0.002,

P¼ 0.994; striato-prefrontal impaired: r¼ 0.645,

P¼ 0.001, unimpaired: r=-0.134, P¼ 0.621).

When the SLF III bundle volume was entered as a

covariate alongside estimated IQ and years of education,

it was a unique predictor [F(1,35) ¼ 10.074, P¼ 0.003,

gp
2 ¼ 0.223, LES] and rendered the score difference be-

tween groups non-significant [F(1,35) ¼ 3.227, P¼ 0.081,

gp
2 ¼ 0.084, MES]. The model as a whole accounted for

46.9% of variance in Design Learning scores [F(4,35) ¼
7.742, P< 0.0005, gp

2 ¼ 0.469, LES]. There was no

group-SLF III bundle volume interaction (P¼ 0.154), but

this bundle volume did differ between groups [impaired

mean: 22001.1, unimpaired mean: 24047.5; t(37.8) ¼
�2.210, P¼ 0.033, d¼ 0.713, MES], which was under-

pinned by a significant difference in left hemisphere SLF

III bundle volume [impaired mean: 18797.6, unimpaired

mean: 20736.4; t(37.4) ¼ �2.156, P¼ 0.038, d¼ 0.696,

MES]. Indeed, this left-sided bundle volume alone (with

estimated IQ and years in education also as covariates)

both uniquely predicted [F(1,35) ¼ 9.029, P¼ 0.005, gp
2

¼ 0.205, LES] Design Learning scores and eradicated the

significant score difference [F(1,35) ¼ 3.187, P¼ 0.083,

gp
2 ¼ 0.083, MES] between groups (correlation with task

r¼ 0.580, P< 0.0005, LES, n¼ 40; Fig. 5B). This model

as a whole accounted for 45.7% of variance in Design

Learning scores [F(4,35) ¼ 7.360, P< 0.0005, gp
2 ¼

0.457, LES]. Both whole sample task-SLF III bundle vol-

ume correlations were seemingly influenced by the cogni-

tively impaired group (bilaterally averaged, impaired:

r¼ 0.643, P¼ 0.001, unimpaired: r¼ 0.154, P¼ 0.569;

left-sided, impaired: r¼ 0.631, P¼ 0.001, unimpaired:

r¼ 0.060, P¼ 0.826).

Table 3 Mean right striato-parietal microstructural dif-

ferences between cognitively impaired and unimpaired

groups (independent t-test).

Measure Whole bundle Lesioned streamlines

t P t P

FA �1.140 0.261 �1.976 0.055

MD 2.310 0.027* 2.083 0.044*

RD 2.278 0.029* 2.257 0.030*

AFD �1.964 0.057 �2.472 0.018*

NuFO �1.413 0.166 �1.503 0.141

RISH 0 �1.943 0.060 �2.061 0.046*

RISH 2 �1.457 0.153 �1.933 0.061

Note. MD and RD group means were higher, and FA, AFD, NuFO, RISH 0, and RISH 2

lower, in the cognitively impaired group than in those unimpaired. * significant at

P <0.05.
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Discussion
The mapping of region-specific and tract-specific struc-

tural differences with cognitive differences in multiple

sclerosis remains underutilized for recognizing individual

differences, predicting functional outcomes, optimizing

disease monitoring, and supporting treatment options.

Here we have demonstrated that, in a cohort with long-

standing multiple sclerosis, relatively low physical disabil-

ity and functional impact (Table 1), four out of five cog-

nitive differences were explained by variation in white

matter measures. Furthermore, three cognitive differences

were better explained by tract-specific than global meas-

ures. We have demonstrated that variation in pathologic-

al burden reflected by both macro- and microstructural

tract-specific measures underpinned these cognitive group

differences.

Despite the groups being well matched across demo-

graphic and clinical variables, cognitive differences were

demonstrated along with greater lesion burden in those

classed as cognitively impaired (Table 1). Indeed, whilst

tractogram load did not differ between groups, on aver-

age 47% of the tractogram was affected by lesions in the

cognitively impaired group in contrast to the 34% in

those unimpaired. Overall, these global measures were

less meaningful as predictors of cognitive differences than

tract-specific measures, but tractogram load nonetheless

supplements lesion load by allowing for convenient quan-

tification and illustration of the structural network inter-

acting with lesions, beyond that afforded by conventional

2D slice-based visualizations (Fig. 5A).

Verbal tasks

None of the white matter imaging measures selected for

this study accounted for the difference in Letter Fluency

between groups. The group difference in List Learning, in

turn, was the only one explained by a global imaging

measure (lesion load), which is in keeping with previous

studies linking verbal learning with lesion load in relaps-

ing-remitting multiple sclerosis.80,81 In contrast, both ver-

bal and visual immediate recall score differences were

accounted for by the isthmus of the corpus callosum. It

appears the pathological burden within the isthmus

(mean bundle load 60%, n¼ 40) was the key driver of

the adverse impact on these task scores as opposed to

the isthmus being the most critical structure supporting

these functions. While temporoparietal regions are

involved in recall82 and the isthmus likely contributes,

visual recall was better predicted by the striato-parietal

pathways and verbal recall has previously been associated

with other white matter tracts83–85 not considered in this

study.

Visual tasks

Right striato-parietal lesionometry and isthmus bundle

load were the only measures that, by themselves, miti-

gated the group difference in Figure Recall. The mean

bundle loads of both these tracts differed between groups

(isthmus: impaired 70%, unimpaired 45%; right striato-

parietal: impaired 53%, unimpaired 32%) suggesting a

critical role for difference in tract-specific pathological

burden in explaining the group difference in Figure

Recall. In addition to bundle load, Tractometry and lei-

sonometry featured particularly in association with Figure

Recall. In fact, the lesionometry correlations were the

highest among the SLF I, SLF II, and striato-parietal

measures surviving the BF threshold (Table 2). Therefore,

the interaction of lesions with the microstructure of the

streamlines traversing them was especially relevant to

Figure Recall performance. Having reduced multiple

microstructural measures using principal component ana-

lysis, we uncovered neuropathological effects on measures

such as AFD and RISH0 (alongside RD and MD) in

lesionometry, which have not been as studied as e.g. FA

in multiple sclerosis, but which differed between groups

and were among the highest loading measures across fac-

tors meaningful for visual recall (Table 3).

Visual learning, in turn, was particularly associated

with striato-prefrontal, genu, and SLF III whole bundle

volumes, with only the latter, and the left SLF III volume

specifically, eradicating the significant score difference be-

tween groups. There were no group differences in SLF III

bundle loads and so the group differences in the bilateral-

ly averaged, and left, SLF III volumes may reflect neuro-

pathology extending beyond the streamlines directly

interacting with lesions. Together these results suggest

that the pathological burden on tracts converging in par-

ietal regions was particularly meaningful in accounting

for group differences in visuospatial-constructional tasks

i.e. Figure Recall and Design Learning. This, in turn, is

congruent with previous associations between posterior

temporal and/or parietal regions and performance in

these types of task.86,87

Key contributions

Periventricular and posterior regions have often been

associated with neuropathological burden in multiple

sclerosis with some having demonstrated structural differ-

ences between multiple sclerosis groups in these regions

previously, particularly within the posterior corpus cal-

losum.7,47,64 However, we have enhanced these previous

findings by linking variation in several structures to dif-

ferences in specific cognitive functions. Our results have

demonstrated that both (task-relevant) regional white

matter and tract-specific structural reserve are important

in understanding cognitive differences in multiple scler-

osis, even in samples considered to have low disease im-

pact (Table 1). We highlight that quantifying structural
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reserve benefits from specificity not provided by global

measures such as lesion load or tractogram load, or even

whole bundle measures, which can mask the relationships

between individual tracts and specific cognitive differen-

ces. Furthermore, considering the differences in white

matter measure correlations between groups across the

visual tasks, the potential cumulative effects of tract-spe-

cific neuropathological variation across task-relevant

structures may underpin these group differences by rela-

tively better structural reserve facilitating better functional

(i.e. cognitive) reserve. This, in turn, may mask relevant

structure-function relationships in those cognitively unim-

paired.88–90 Whilst it is important to acknowledge the

relatively small group sizes, this pattern of differing corre-

lations was repeated across all measure-visual task rela-

tionships with the cognitively impaired group driving the

strengths of the whole sample correlations. It is worth

noting that despite only a few white matter measures

demonstrating statistically significant group differences,

across the tracts included in this study, all measure group

means favoured the cognitively unimpaired group with

only two exceptions (SLF II bundle volume and genu

lesionometry).

Limitations

Whilst we have demonstrated that cognitive group differ-

ences can be explained by neuropathology in white mat-

ter, we are not suggesting that cortical influences can be

discounted. The potential concomitant effects derived

from cortical structures are unknown, and future work

including cortical variables alongside these measures may

elucidate their relationships and respective contributions

to behaviour. Another consideration is that among the

white matter measure-cognitive task relationships that did

not reach the BF threshold, there may have been some

meaningful unilateral correlations that were masked by

the averaging of the right and left values from the

striato-cortical and SLF pathways. Owing to asymmetries

in lesion distributions across bilateral tracts, future work

could uncover further unilateral tract-specific influences

on particular cognitive tasks. A further limitation is the

approach taken to classify cognitive impairment as this

allowed for there to be ‘normal’ and ‘impaired’ perform-

ances in the impaired and unimpaired groups, respective-

ly, at the level of the individual task. However, this was

somewhat mitigated by the focus being on tasks that dif-

fered between groups. Last, as the bundles were selected

owing to traversing regions often associated with neuro-

pathology in multiple sclerosis, rather than according to

the neuroanatomy associated with specific cognitive tasks,

it is not known if other white matter structures may have

contributed to performance differences.

Conclusion
These results highlight the potential for diffusion-weighted

MRI to disentangle the relationships between regional

neuropathology and performance on specific cognitive

tasks in multiple sclerosis. The benefits for clinical prac-

tice include the ability of this approach to better measure

eligibility and the effects of targeted therapeutic and re-

habilitative interventions, allowing also for greater preci-

sion in measurement of outcomes. It may be that the

measures examined in this study can offer superior

pathological specificity to clinically relevant processes, in

which case new treatment effects can be uncovered and

quantified. However, it is not yet clear when one meas-

ure may demonstrate better sensitivity than another and

future work could help inform how to optimize their

application.
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