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Abstract

Neurocomputational accounts of psychosis propose mechanisms for how information is

integrated into a predictive model of the world, in attempts to understand the occurrence of

altered perceptual experiences. Conflicting Bayesian theories postulate aberrations in either

top-down or bottom-up processing. The top-down theory predicts an overreliance on prior

beliefs or expectations resulting in aberrant perceptual experiences, whereas the bottom-up

theory predicts an overreliance on current sensory information, as aberrant salience is

directed towards objectively uninformative stimuli. This study empirically adjudicates

between these models. We use a perceptual decision-making task in a neurotypical popula-

tion with varying degrees of psychotic-like experiences. Bayesian modelling was used to

compute individuals’ reliance on prior relative to sensory information. Across two datasets

(discovery dataset n = 363; independent replication in validation dataset n = 782) we

showed that psychotic-like experiences were associated with an overweighting of sensory

information relative to prior expectations, which seem to be driven by decreased precision

afforded to prior information. However, when prior information was more uncertain, partici-

pants with greater psychotic-like experiences encoded sensory information with greater

noise. Greater psychotic-like experiences were associated with aberrant precision in the

encoding both prior and likelihood information, which we suggest may be related to gener-

ally heightened perceptions of task instability. Our study lends empirical support to notions

of both weaker bottom-up and weaker (rather than stronger) top-down perceptual pro-

cesses, as well as aberrancies in belief updating that extend into the non-clinical continuum

of psychosis.

Author summary

Investigating psychotic-like experiences in non-clinical populations can aid our under-

standing of how and why altered perceptual experiences arise in psychosis. On one hand,
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psychotic-like experiences might arise due to an overreliance on current sensory informa-

tion in one’s environment with a reduced regard for prior contextual information when

making decisions or inferences about stimuli and events. Alternatively, this might be due

to an overreliance on contextual information such as prior beliefs and expectations. In

this study, these hypotheses are adjudicated in a perceptual decision-making task in which

the uncertainty of prior beliefs and sensory information is manipulated. We found that

people with greater psychotic-like experiences relied more on sensory information relative

to prior expectations across the task. This was driven by the perception of greater uncer-

tainty or unreliability associated with prior information. Psychotic-like experiences were

also associated with the perception of greater uncertainty in sensory information, suggest-

ing altered encoding of both prior and likelihood information. These findings show that

alterations in belief updating extend into the non-clinical continuum of psychotic-like

experiences, which provide important utility in understanding the occurance of psychosis.

Introduction

Sensory processing under uncertainty is intrinsic to how we predict and engage with the envi-

ronment to form coherent and accurate representations or beliefs about outcomes that facili-

tate behavioural updating. Neurocomputational accounts of schizophrenia propose

mechanistic disruptions in information processing that lead to the formation of delusions and

hallucinations [1,2]. Given that the world we live in is often clouded by noisy, ambiguous sen-

sory inputs, the brain must create an internal representation or model that is used to infer the

cause of this sensory information [3,4]. A predictive processing perspective assumes that per-

ception is an inferential optimisation process whereby the cause of sensory events is estab-

lished via a combination of both current sensory evidence (likelihood) and prior beliefs or

expectations (priors) about the occurrence of the event [3,5,6]. As incoming information may

differ in its reliability across contexts, it must be weighted accordingly to facilitate accurate

perceptual inference. Discrepancies between predictions and observations create error signals

(prediction errors) that guide the updating of predictions and the relative precision attributed

to expectations, compared to sensory information [3]. Aberrancies in this precision afforded

priors and likelihoods provide a succinct mechanistic platform for understanding dysfunctions

in perceptual inferences and experiences across the continuum of psychosis [2,7,8].

Early accounts of predictive processing suggest that an overreliance on sensory information

relative to prior expectations confounds perceptual experiences in schizophrenia [1,9]. In this

view, heightened salience placed on objectively uninformative events or stimuli results in the

misinterpretation of prediction errors as meaningful change, which contributes to misleading

belief updating about the environment. This can be explained as a failure to attenuate the pre-

cision of sensory information relative to prior beliefs at low hierarchical levels, leading to per-

ception being overly driven by bottom-up processes [2]. Contrasting accounts suggest that

aberrant perceptual experiences arise due to an over-reliance on prior expectations or beliefs

about the cause of sensory events, driven by an abnormality in top-down guided perception

[10,11]. This results in an over-attenuation of prediction errors, with overly precise priors con-

tributing to perception in the absence of objectively identifiable stimuli. Extensive evidence

has provided support for both sides of these seemingly contradictory canonical accounts of

hallucination and delusion formation. More recently, the hierarchical nature of predictive cod-

ing processes have been utilised to harmonise these competing hypotheses into a unifying

explanatory framework [2,12–14].
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Although these co-occurring aberrancies can be accounted for within the hierarchical

nature of predictive coding, it is somewhat unclear how the precision afforded to each type of

information is altered. For example, an overreliance on sensory information could be driven

by chronically over-precise low-level prediction errors contributing to unusual belief updating

[15]. This would mean that more weight or salience is placed on persistently surprising events,

requiring the adoption of higher-order beliefs for them to be explained away [16]. Alterna-

tively, higher-order beliefs may be of low precision, leading to a lack of regularisation that ren-

ders the environment seemingly volatile or unpredictable, thus enhancing the weight of lower-

level prediction errors [1,2]. Thus, discrepancies within the literature describe alternative

accounts of how precision is afforded to likelihood and prior information. It is unclear

whether these differences are driven by aberrant precision of encoding uncertainty in likeli-

hood or prior information. Our study is designed to empirically adjudicate between these

opposing accounts. We do so by directly quantifying the precision encoded in both prior and

likelihood information in neurotypical individuals with varying levels of psychotic-like

experiences.

Recognising the complexity and dimensional nature of psychopathology, contemporary

approaches into the investigation of psychoses signify a shift towards dissecting the spectrum

of schizophrenia into subgroups or dimensions and even beyond dichotomous notions of

health and disease [17]. This view suggests that perceptions about instability of the world may

gradually extend into non-clinical populations who have psychotic-like experiences, rather

than presenting at a threshold level for diagnostic classification. Within this psychosis-contin-

uum perspective, psychotic symptoms are considered to be an extreme outcome of a continu-

ously distributed phenotype which extends into the non-clinical population [18]. Thus,

understanding aberrant information integration along the continuum of psychosis can eluci-

date the development of proneness to hallucinations and delusions, into more extreme symp-

tomatologic presentations in schizophrenia.

Here, we used Bayesian modelling to quantify the precision of representations of likelihood

and prior information in a task that manipulated uncertainty in both [19], providing a deeper

elucidation of perceptual inference which is lacking in previous literature [20]. This allowed us

to disentangle between the competing theories of the development of psychotic-like symp-

toms, namely a top-down, overreliance on priors account, and a bottom-up, overreliance on

likelihood account. Our approach enabled us to determine whether an overreliance on prior

or likelihood information correlates with psychotic-like experiences. It also allowed us to eluci-

date whether the subjective uncertainty associated with the representation of likelihood and/or

prior information (a proxy for the precision afforded to each source of information) was asso-

ciated with psychotic-like experiences. Additionally, investigating variability in the relative

weighting of prior to likelihood information across the task allowed us to determine the rela-

tionship between psychotic-like experiences and aberrancies in the stability of information

integration in this paradigm. In response to the replication crisis, we present parallel results

from a discovery and an independent, validation dataset.

Methods

Ethics statement

All participants gave written informed consent and received monetary compensation (5GBP)

for participation. The study was approved by the University of Melbourne Human Research

Ethics Committee (Ethics ID: 20592).
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Participants

The total sample from the discovery dataset included 363 participants (age range 21–80,

M = 44.02, SD = 13.31; 150 male, 210 female, 3 non-binary/prefer not to say). A power analysis

was conducted based on the findings of the discovery data (R software: “pwr.r.test” function),

indicating that, to increase the power to 80% to observe small to moderate effects at a = 0.05

two-sided, an optimal sample size of 782 participants would be required for the validation

dataset. Accordingly, the total sample from the validation study included 782 participants (age

range 18–73, M = 31.62, SD = 11.15, 356 female, 412 male, 14 non-binary/prefer not to say).

All participants were recruited through Prolific (www.prolific.co), an online platform

widely used to source participants in the general population. To be eligible for the study, par-

ticipants had to be at least 18 years old and have corrected to normal vision. Participants were

asked about their highest level of education, left or right handedness, previous diagnosis of

neurological conditions, emotional or psychological disorders, and/or substance dependence,

previous drug use, and any other conditions that may affect performance.

Experimental design

Procedure

Firstly, participants provided demographic details and completed the 42-item Community

Assessment of Psychic Experiences (CAPE; [21]), used to measure subclinical psychotic-like

experiences via Qualtrics (www.qualtrics.com). The CAPE uses a four-point Likert scale to

measure lifetime psychotic experiences. It measures frequency and distress of psychotic-like

thoughts, feelings, and mental experiences. Specifically, it relates to three subdimensions of

psychosis symptomatology, assessing alterations in thought and sensory perception (positive

dimension), social isolation and affective blunting (negative dimension), and anhedonia and

sadness (depressive dimension). Since we were interested in drawing parallels between the

accounts proposed for positive symptoms in schizophrenia and those in nonclinical individu-

als, this study focused on the positive symptom frequency subscale (CAPE-P) as our primary

measure of psychotic-like experiences. Following completion of this questionnaire, partici-

pants were then directed to Pavlovia (www.pavlovia.org), where they completed a computer-

ised spatial span test [22] as a measure of working memory. Finally, participants completed the

perceptual decision-making tasks, involving the likelihood-only estimation task followed by

the coin task as modified from Vilares et al., [19].

Coin task

Participants performed a decision-making task where they were asked to guess the position of

a hidden target on a screen, requiring them to integrate both noisy sensory evidence of the tar-

get’s location, and prior expectation of the target’s location. More specifically, participants

were told a coin was being thrown into a pond and were asked to guess where the coin had

fallen. Likelihood and prior variance were manipulated with a two-by-two factorial design

with narrow and wide variance respectively. On each trial, five blue dots denoted “splashes”

produced by the coin falling in. The variance of these splashes changed on each trial as an

index of either narrow or wide likelihood conditions. The position of these splashes was drawn

from a Gaussian distribution centred on the (hidden) location of the coin, with standard devia-

tion of either 6% of the screen width (SD = 0.096; narrow likelihood trials) or 15% of the screen

width (SD = 0.24; wide likelihood trials). An example trial is shown in Fig 1. Participants were

also informed that the person throwing the coin changed between blocks, and one thrower

was more accurate than the other. They were told that both throwers aimed at the screen
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centre (indicating the mean of the prior). Although they were not explicitly told which thrower

was better or worse, this could be inferred through the distribution of previous coin locations

from trial-to-trial. Although participants were not explicitly told which block they were in,

they were informed that thrower A and thrower B alternated between blocks. This was rando-

mised across participants so that half of participants received thrower A first, and half the par-

ticipants received thrower B first. Thus, participants could infer the prior information

(regarding the variability of the thrower) based on the distribution of throws. The location of

the coin was drawn from a second, independent Gaussian distribution centred on the middle

of the screen, with a standard deviation of either 2.5% of the screen width (SD = 0.04; narrow

prior blocks) or 8.5% of the screen width (SD = 0.136; wide prior blocks). The four conditions

are visually depicted in Fig 1.

While the variance of the likelihood changed pseudorandomly from trial-to-trial (counter-

balanced across all trials), the variance of the prior changed from block to block, with the order

(thrower A vs thrower B) also counterbalanced across participants. Thus, there were four condi-

tions: narrow prior and narrow likelihood (PnLn), narrow prior and wide likelihood (PnLw),

wide prior and narrow likelihood (PwLn), and wide prior and wide likelihood (PwLw).

Fig 1. Coin task paradigm (adapted from Vilares et al., [19] and Randeniya et al., [23]). A) Time course of a single exemplar trial: participants are

shown five blue dots to represent splashes of the location of a coin being thrown into a pond. They are then asked to move the blue bar/net to where

they estimate the coin’s location to be, after which the coin’s true location is revealed, and they move onto the next trial. B) Task design as adapted

from Vilares et al., [19]: the four conditions of the task are visually depicted including two types of likelihood as manipulated through the

distribution of splashes on each trial (Ln = narrow likelihood; Lw = wide likelihood) and two types of prior as manipulated through the accuracy of

the thrower on each block (Pn = narrow prior; Pw = wide prior).

https://doi.org/10.1371/journal.pcbi.1011670.g001
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For each trial, participants were instructed to move a net (blue bar) horizontally across the

screen to indicate where they thought the coin had landed. The true position of the coin (rep-

resented as a yellow dot) was then shown for 1500 ms. Scoring was tallied across each trial,

with a point earned each time any part of the coin lay within the net. Participants were pro-

vided with two blocks of two practice trials before completing the main task. The main task

consisted of two blocks per thrower, with each block containing 75 trials each (resulting in 300

trials total).

Likelihood only task

Prior to completing the coin task, participants completed the likelihood-only estimation task

to determine a measure of subjective likelihood variance or sensory noise. The setup of this

task was identical to the main task, without the incorporation of the prior condition. This pro-

vided an estimation of how participants perceived the centre of the splashes on their own,

without prior knowledge. Participants were asked to estimate where they thought the true coin

location was, which was always the centre of the displayed splashes, by moving the net hori-

zontally across the screen. The true coin location (represented as a yellow dot) was revealed at

the end of each trial, providing feedback on participants estimations. This task consisted of

100 trials, with an even number of wide and narrow likelihood distributions.

Behavioural analysis

Successful performance of the task required participants to move the net to the most likely

location of the hidden coin. Utilising Bayes rule, we can elucidate what the optimal estimate of

the position of the coin would be on each trial [19,24]:

Xest ¼
s2
L

s2
L þ s

2
P

mP þ
s2
P

s2
L þ s

2
P

mL ð1Þ

where Xest is the estimated position of the coin (i.e., participants responses on each trial), (μP,
μL) represent the prior and likelihood means and (s2

P; s
2
L) represent the prior and likelihood

variances, respectively. In our experiment, the mean of the prior was kept constant (the centre

of the screen, μP), while the mean of the likelihood was determined by the centre of the five

blue dots in each trial (μL).

Performance

Performance in the likelihood-only task was characterised by the average distance between

participants estimates of the coin location (net location) and the true centre of the splashes

(i.e., mean estimation error). Similarly, performance in the coin task was characterised by the

average distance participants estimates (net location) and the true location of the coin.

Sensory weight (likelihood vs prior reliance)

To estimate participants reliance on likelihood relative to prior information, we fitted a linear

regression to participants’ estimates of the coin’s position for each trial (Xest) as a function of

the centre of the splashes (i.e., the likelihood mean, μL):

sw ¼
s2
P

s2
L þ s

2
P

ð2Þ

where sw is the slope of the linear regression, which indicates how much each participant relies

on likelihood information. A slope closer to one indicates a greater reliance on the likelihood
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information, while a slope closer to zero indicates greater reliance on prior information. A

slope between zero and one indicates that participants integrate both likelihood and prior

information in their estimates. This was calculated overall, for each condition, and for each

block. We use the term sensory weight throughout the manuscript. Note, however, that the

sensory weight is a relative measure for how much people rely on sensory information versus

prior information, hence it is simultaneously a measure of “reliance on sensory information”

and “reliance on prior information”.

Bayesian optimal sensory weights

If participants perform according to the Bayesian optimum as portrayed in Eq (1), then the

optimal values for the slopes/sensory weights should be equal to the perceived
s2
P

s2
Lþs

2
P
, where s2

P

is the variance associated with the prior (narrow prior s2
P ¼ 0:042; wide prior s2

P ¼ 0:1362)

and s2
L is the variance associated with the likelihood (in this instance, narrow likelihood

s2
L ¼

0:0962

5
; wide likelihood s2

L ¼
0:242

5
). These calculations of Bayesian optimality refer to poste-

rior computations, integrating the relative uncertainty of both prior and likelihood

information.

Sensitivity to prior change across blocks

An examination of how sensitive participants were to changing prior uncertainties can be esti-

mated by the mean absolute difference in sensory weight from one block to the next (Bi =

1,. . .,4):

Sensitivity to prior change ¼
jswB1 � swB2j þ jswB2 � swB3j þ jswB3 � swB4j

3
ð3Þ

which provides an indication of individuals’ sensitivity to changes in prior uncertainty across

the task.

Trial-by-trial variability in sensory weight

Eq (1) can be rewritten to calculate an instantaneous sensory weight as an indicator of partici-

pants reliance on likelihood relative to prior information on any given trial:

swtrial ¼
Xest � mP
mL � mP

ð4Þ

where Xest is the participants estimated position of the coin on a given trial (net location), μP is

the mean of the mean of the prior (assumed at the centre of the screen), and μL is the mean of

the likelihood (the centre of the five blue dots for that trial). To ensure the trial-by-trial sensory

weight varied from 0 to 1, we calculated the logistic of the swtrial ¼ 1

ð1þe� swtrialÞ. This variance of

the trial-by-trial sensory weight for each participant over the whole session provided an indica-

tion of how much participants sensory weights varied instantaneously across the task.

Subjective likelihood variance

The likelihood-only task can be used to determine a proxy for participants subjective likeli-

hood variance or sensory noise [23]. This is determined by the variance of the participants
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estimates of the mean (μest) relative to the true mean of the splashes (μL):

s2

SL ¼
Sðmest � mLÞ

2

nTrials
ð5Þ

where the number of trials (nTrials) was equal to 100 in the likelihood-only task.

Subjective prior variance

Subjective prior variance (s2
P) is an estimate of participants’ subjective representation of the

variability in prior information (i.e., the variability of the thrower). This is expected to change

between blocks depending on which thrower is throwing the coin (as one is more variable

than the other) and can be used as a proxy to determine participants’ individual estimates of

how much variability or overall uncertainty there is in prior information. Subjective prior vari-

ance is calculated as a weighted combination of subjective likelihood variance and sensory

weight, which is derived by rearranging Eq 2 as follows:

s2

P ¼
s2
SL∗sw
ð1 � swÞ

ð6Þ

Higher values for the subjective prior variance should be interpreted as more subjective

uncertainty (i.e., increased variability) in the internal representations of prior information. In

this equation, s2
SL is estimated from participants subjective likelihood variance (as calculated in

Eq 5). Optimal or ‘imposed’ prior variance scores were also calculated based on this equation,

where the actual likelihood variance and optimal sensory weights replaced the perceived values

(see section on Bayesian optimal sensory weights for calculations).

Statistical analysis

To understand whether Bayesian models can explain sensory learning in psychotic-like experi-

ences, we explored the relationship between CAPE-P scores and aspects of task performance.

Spearman-ranked correlation analyses were calculated for non-parametric variables, whilst

Pearson correlations were calculated for linearly distributed variables (such as log-transformed

CAPE-P scores). Additionally, bootstrapped confidence intervals with 1000 bootstrapped rep-

licates were calculated for these correlation analyses. Although we believe that accounting for

multiple comparisons with Bonferroni corrections is too conservative of an approach for our

research design and may increase the risk of a type 2 error [25], we have included adjusted p-

values for our main correlations of interest as a comparison to bootstrapped confidence inter-

vals in S3 Table. Mean estimation error in the likelihood only task was used as a criterion to

detect poor performance or low effort, with 7 outliers excluded from the discovery dataset and

12 outliers excluded from the validation dataset (z score greater than ± 3). Similarly, mean esti-

mation error in the main task was used to detect poor performance, with 8 outliers excluded

from the discovery dataset and 27 outliers excluded in the validation dataset.

Results

Participants

Data from a total of 1145 participants were collected across the two datasets, with demographic

details provided in Table 1. Interestingly, there was a significant difference between CAPE

scores (total scores as well as each subscale scores) across the two datasets (provided in

Table 1). Specifically, the mean CAPE-P score was significantly higher in the validation dataset

compared to the discovery dataset (Fig 2). Despite this, a previously published mean CAPE-P
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score in a large sample (N = 21,590) with online administration (M = 27.7, SD = 4.5; [26]) lay

between the mean scores from the discovery (M = 25.07, SD = 5.38) and validation (M = 30.32,

SD = 7.61) datasets. The country of residence of responders differed slightly across the two

datasets, with the majority in the discovery dataset residing in the United Kingdom (75.7%)

and the United States (17.4%), compared to the majority from the validation dataset residing

in South Africa (22.4%) and Mexico (19.7%), followed by the United Kingdom (13.17%) and

the United States (8.06%). Interestingly, psychotic-like experiences as measured by the CAPE

have previously been found to be more frequent in low and middle income countries than in

high income countries [27]. This could account for the differences in CAPE-P distributions

across the two samples, potentially increasing the generalisability of our findings.

Task performance

An analysis of performance accuracy in the likelihood-only task revealed significantly greater

estimation errors in the wide likelihood condition, compared to the narrow likelihood

Table 1. Demographic profiles and scores from the CAPE across the discovery and validation datasets, with p-values indicating differences between the two

datasets.

Discovery dataset (n = 363) Validation dataset (n = 782)

M SD Range M SD Range p-value

Age (years) 44.02 13.31 21–80 31.62 11.15 18–73

Gender Female Male Other Female Male Other

57.9% 41.3% 0.8% 45.5% 52.7% 1.8%

Highest level of education Primary school Secondary school Tertiary education Primary school Secondary school Tertiary education

1.1% 22.3% 76.5% 0.9% 26.3% 72.5%

Employment status Full time Part time Unemployed Full time Part time Unemployed

49.3% 18.7% 10.7% 41.4% 16.7% 17.2%

CAPE Total 63.71 14.59 42–120 73.06 15.66 42–130 2.2 x 10−16

CAPE-P 25.07 5.38 20–55 30.32 7.61 19–63 2.2 x 10−16

CAPE-N 24.51 7.16 14–46 27.14 7.16 14–52 2.26 x 10−09

CAPE-D 14.13 4.21 8–31 15.61 4.36 7–31 6.32 x 10−10

Note: CAPE-P = positive dimension, CAPE-N = negative dimension, CAPE-D = depressive dimension

https://doi.org/10.1371/journal.pcbi.1011670.t001

Fig 2. Distribution of psychotic-like experiences. Measured via CAPE-P scores in both discovery and validation datasets, including A) raw scores and B) log-

transformed scores.

https://doi.org/10.1371/journal.pcbi.1011670.g002
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condition for both the discovery (t(355) = 27.24, p< 2.2 x 10−16, 95%CI = [0.016, 0.019) and vali-

dation (t(769) = 43.09, p< 2.2 x 10−16, 95%CI = [0.017, 0.019]) datasets. This indicated that the

likelihood uncertainty manipulation functioned as expected, with higher uncertainty in the wide

likelihood condition resulting in greater estimation errors. Additionally, a two-way ANOVA of

task performance in the main task revealed no significant differences in mean estimation errors

in the wide vs narrow prior condition (F = 1.564, p = 0.211), and the wide vs narrow likelihood

condition (F = 0.014, p = 0.906), in the discovery dataset. In the validation dataset, a main effect

of prior (Pw>Pn; F = 6.34, p = 0.011), indicating that greater estimation errors occurred in the

wide prior condition compared to the narrow prior condition, however there was no significant

difference in mean estimation errors occurring in the wide likelihood and narrow likelihood con-

ditions (F = 2.489, p = 0.114; see S1 Fig for comparison across conditions).

Participants rely on the most reliable source of information aligning with

Bayesian principles, albeit non-optimally

A comparison of mean sensory weights between conditions was used to establish relative

weighting on likelihood to prior information in the main task. A two-way ANOVA revealed a

main effect of prior (Pw>Pn; discovery: F = 282.96, p< 2.2 x 10−16; validation: F = 531.31,

p< 2.2 x 10−16), with higher sensory weights in the wide prior condition indicating that partic-

ipants were more likely to rely on likelihood information when the prior was more variable.

Similarly, a main effect of likelihood (Ln>Lw; discovery: F = 81.76, p< 2.2 x 10−16; validation:

F = 126.68, p< 2.2 x 10−16) indicated that participants were more likely to rely more on likeli-

hood information when the likelihood was less variable. This was replicated across the two

datasets, indicating that reliance on likelihood relative to prior information functioned as

expected across the four conditions (Fig 3). Moreover, Wilcoxon signed rank tests indicated

that participants median likelihood to prior weightings significantly differed from Bayesian

optimal weightings (blue dashed lines in Fig 3) in each condition and across both datasets (see

S1 Table). Despite this, the pattern of performance was verging towards optimal, suggesting

that participants were approximating Bayesian performance.

Fig 3. Comparison of sensory weights across the four conditions. Sensory weight for each participant is calculated by the slope of the regression between the

true centre of the likelihood and participant’s estimates of the coin’s location for each condition. Sensory weight closer to 1 indicates greater reliance on

likelihood, whilst sensory weight closer to 0 indicates greater reliance on prior. Blue dashed lines indicate Bayesian optimal computations of the coin’s location,

based on the posterior integration of uncertainty in both prior and likelihood information. Replicated patterns of performance were found across the A)

discovery and B) validation datasets relative to Bayesian optimality. Conditions: PnLn = narrow prior, narrow likelihood (red dots); PnLw = narrow prior, wide

likelihood (green dots); PwLn = wide prior, narrow likelihood (teal dots); PwLw = wide prior, wide likelihood (purple dots).

https://doi.org/10.1371/journal.pcbi.1011670.g003
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Psychotic-like experiences positively associated with increased reliance on

likelihood information

Pearson correlation between log-transformed CAPE-P scores and global sensory weights (i.e.,

reliance on likelihood to prior information across the task) revealed a significant, positive rela-

tionship in both the discovery (r = 0.12, p = 0.029, 95%CI = [0.015, 0.221]) and validation

(r = 0.082, p = 0.024, 95%CI = [0.0052, 0.157]) datasets (Fig 4). This indicates that psychotic-

like experiences are associated with an increased reliance on likelihood information across the

task. When considering the relationship between log-transformed CAPE-P scores and sensory

weights in each condition, a significant positive relationship was found in the narrow prior

conditions, but not the wide prior conditions across both datasets (provided in Table 2).

No significant relationship between psychotic-like experiences and

variability in likelihood vs prior reliance across blocks and from trial-to-

trial

Average change in sensory weight was computed across blocks, providing an indication of

individuals’ sensitivity to changes in prior uncertainty (which changed every block). An analy-

sis of average slope change across blocks revealed a weak, negative Spearman correlation

between sensitivity to prior change and CAPE-P scores in the validation dataset (r = -0.074,

p = 0.042), but no significant relationship in the discovery dataset (r = -0.056, p = 0.29). Simi-

larly, instantaneous changes to sensory weights provided an indication of how much one’s reli-

ance on likelihood to prior information varied from trial-to-trial. No significant relationship

Fig 4. Association between psychotic-like experiences and global sensory weight. A significant positive relationship was found between psychotic-like

experiences and global reliance on likelihood relative to prior information across the task in both the A) discovery and B) validation datasets.

https://doi.org/10.1371/journal.pcbi.1011670.g004

Table 2. Pearson correlation analyses between sensory weights (relative likelihood to prior reliance) and log-

transformed CAPE-P scores across each of the four conditions.

Discovery dataset Validation dataset

Transformed CAPE-P score correlated with: rs p rs p
Sensory weight Sensory weight

PnLn 0.112 0.034 0.075 0.038

PnLw 0.109 0.041 0.083 0.022

PwLn 0.111 0.037 0.058 0.112

PwLw 0.069 0.192 0.021 0.567

https://doi.org/10.1371/journal.pcbi.1011670.t002
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was found between variance in trial-by-trial sensory weight across the task and CAPE-P scores

for both the discovery (r = 0.096, p = 0.069) and validation (r = 0.064, p = 0.079) datasets. This

suggests there was little to no relationship between psychotic-like experiences and variability

or changes to sensory weights across blocks, and instantaneously across trials.

Psychotic-like experiences positively associated with subjective likelihood

variance in validation dataset only

Subjective likelihood variance was calculated in the likelihood-only task as a proxy of how

much participants perceived uncertainty in likelihood information (i.e., distribution of the five

blue dots) to varying across the task. As expected, participants’ average subjective likelihood

variance was found to be significantly greater in the wide likelihood condition, compared to

the narrow likelihood condition in both the discovery (t(339) = 11.06, p< 2.2 x 10−16) and val-

idation (t(750) = 12.81, p< 2.2 x 10−16) datasets. When considering the relationship between

overall subjective likelihood variance (across the likelihood-only task) and psychotic-like expe-

riences, no significant Spearman-ranked correlation was found in the discovery dataset

(r = 0.077, p = 0.16, 95%CI = [-0.031, 0.182]; Fig 5), whilst a significant positive Spearman-

ranked correlation between subjective likelihood variance and CAPE-P scores was found in

the validation dataset (r = 0.15, p = 2.5x105, 95%CI = [0.084, 0.224]). This might suggest that

participants with increasing psychotic-like experiences are more likely to perceive the likeli-

hood information to be more uncertain or variable across the task, however this effect was

only found in the larger dataset.

Psychotic-like experiences positively associated with subjective prior

variance across both datasets

Furthermore, individuals’ subjective likelihood variance and sensory weights were utilised to

calculate subjective prior variance, as a proxy for how much participants were perceiving

uncertainty in prior information (the accuracy of the thrower) to vary across the task. A com-

parison of mean subjective prior variance between conditions revealed a main effect of prior

(Pw>Pn; discovery: F = 46.95, p = 1.18 x 10−11; validation: F = 47.94, p = 5.56 x 10−12), suggest-

ing that participants were more likely to estimate that prior information was more variable in

the wide prior condition, compared to the narrow prior condition. Despite this expected

Fig 5. Association between psychotic-like experiences and subjective likelihood variance. A positive relationship was found between subjective likelihood

variance across the task and increasing psychotic-like experiences in B) the validation dataset, but not A) the discovery dataset.

https://doi.org/10.1371/journal.pcbi.1011670.g005
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pattern of performance, Wilcoxon ranked test indicated that participants’ median subjective

prior variance scores significantly differed from optimal or ‘imposed’ prior variance scores

(see S2 Table for further details).

Spearman-ranked correlation analysis revealed a significant positive relationship between

overall subjective prior variance (across all trials in the main task) and CAPE-P scores in both

the discovery (r = 0.11, p = 0.046, 95%CI = [0.0002, 0.214]) and validation (r = 0.14, p = 1.16 x

10−4, 95%CI = [0.069, 0.219]) datasets (Fig 6). This suggests that participants with increasing

psychotic-like experiences tend to perceive prior information to be more uncertain or variable

across the task. Spearman correlations between CAPE-P scores and subjective prior variance

were also calculated across each condition, as shown in Table 3. Whilst significant positive

relationships were found across all conditions in the validation dataset, this relationship was

only seen in wide likelihood conditions in the discovery dataset.

To consider the impact of working memory on prior precision, we conducted a Spearman-

ranked correlation analysis between subjective prior variance and mean spatial span (as a

proxy measure of working memory performance). We found a significant, negative correlation

between subjective prior variance and mean spatial span the discovery (r = -0.2, p = 2.3 x10-4)

and validation dataset (r = -0.2, p = 3.0x10-8). However, we also found a significant, negative

correlation between subjective likelihood variance and mean spatial span in the discovery (r =

-0.17, p = 1.4x10-3) and validation dataset (r = -0.26, p = 5.1x10-13). This suggests that decreases

in working memory might similarly degrade estimates of uncertainty across task in general,

rather than prior precision specifically.

Fig 6. Association between psychotic-like experiences and subjective prior variance. A significant positive relationship was found overall subjective prior

variance across the task and increasing psychotic-like experiences in both the A) discovery and B) validation datasets.

https://doi.org/10.1371/journal.pcbi.1011670.g006

Table 3. Spearman-ranked correlation analyses between subjective prior variance and psychotic-like experiences

across each of the four task conditions.

Discovery dataset Validation dataset

CAPE-P score correlated with: rs p rs p
Subjective prior variance Subjective prior variance

PnLn 0.031 0.581 0.098 0.011

PnLw 0.131 0.017 0.146 7.5 x 10−5

PwLn 0.065 0.247 0.131 5.8 x 10−4

PwLw 0.123 0.027 0.125 8.4 x 10−4

https://doi.org/10.1371/journal.pcbi.1011670.t003
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Discussion

This study aimed to investigate the relationship between psychotic-like experiences and aber-

rant weighting of sensory evidence (likelihood) relative to contextual beliefs (priors) in percep-

tual decision-making under uncertainty. Orthogonal manipulation of uncertainty in both

likelihood and prior information, which is often lacking in previous literature, allowed for a

deeper disentanglement and quantification of alterations in the precision-weighting of infor-

mation, and its association with the non-clinical continuum of psychotic-like experiences. Spe-

cifically, we investigated whether an imbalance in the relative precision weighting of likelihood

to prior information was driven by greater subjective uncertainty in likelihood information or

greater subjective uncertainty in prior information. This extends predictive processing litera-

ture, utilised as a fundamental framework for understanding positive symptom formation in

schizophrenia, by elucidating whether aberrant learning under uncertainty is also evident

across the non-clinical continuum [2,10]. We found a significant, positive relationship

between psychotic-like experiences and sensory weighting, indicating an overreliance on like-

lihood relative to prior information across the task. This relationship was replicated across two

large, independent datasets, suggesting robust replicability of our findings. We also found that

psychotic-like experiences positively correlated with both subjective likelihood variance and
subjective prior variance in the larger, validation dataset, insinuating the perception of gener-

ally greater task instability. We argue that the heightened reliance on likelihood information

throughout the task appears to be driven by noisier representations of prior information

(Fig 6), rather than by the sharpening of sensory representations, which were also shown to be

noisier as psychotic-like experiences increased (Fig 5). Alternatively, the heightened reliance

on likelihood information could lead to the experience of aberrant salience, which could be

more generally influencing the perception of greater task instability.

An overreliance on likelihood aligns with the bottom-up account of positive symptom for-

mation in schizophrenia. Early predictive processing accounts suggest that heightened aberrant

salience towards objectively uninformative events or stimuli (i.e., likelihood information) results

in the misinterpretation of prediction errors as meaningful change [1,2,9]. This misallocation of

precision contributes to misleading belief updating and inferences about the environment,

resulting in an altered internal model of the world. This is thought to be the foundation of faulty

inference, leading to the formation of false concepts as seen in delusions and/or false precepts as

seen in hallucinations. Dopaminergic dysfunction encompasses a biologically plausible formu-

lation of this theoretical framework, whereby hyperactivity of phasic dopamine release contrib-

utes to aberrant processing of unexpected events or stimuli [28,29]. Interestingly, presynaptic

hyperdopaminergic function has not only been found to be related to the severity of symptoms

in people with schizophrenia, but also to the degree of schizotypy in healthy individuals [30,31].

Thus, alterations in the processing of predictions errors, closely aligning with an enhanced

dopaminergic tone, may contribute to confounding perceptual inferences as seen across the

continuum of psychosis. These findings extend the aberrant salience theory of symptom forma-

tion into the non-clinical continuum of psychotic-like experiences. The role of dopamine in the

precision weighting of uncertainty has been previously investigated with a similar coin task par-

adigm in patients with Parkinson’s disease, which is characterised by low dopaminergic tone

[32]. Interestingly, researchers found that dopaminergic medication influenced the weight

afforded to sensory information in patients, providing empirical evidence that increasing dopa-

mine levels increases individuals’ reliance on likelihood relative to prior information in this

population. Future research should verify this assumption across the continuum of psychosis,

in order to investigate whether individual differences in sensory weighting correlates with dopa-

minergic sensitivity and psychotic-like experiences in healthy populations.
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Whilst our findings seem to align with a bottom-up account of aberrant sensory processing

under uncertainty, we conflictingly found that psychotic-like experiences were associated with

increased subjective uncertainty in both prior and likelihood information. Firstly, greater sub-

jective prior variance suggests that the heightened reliance on likelihood information might be

driven by greater subjective uncertainty in the inferred prior (i.e., decreased precision in prior

information). Although this cannot be directly inferred, this aligns with a series of previous

studies, demonstrating that a decreased tendency for percept stabilisation whilst viewing

ambiguous stimuli was related to the degree of delusional convictions in people with schizo-

phrenia [33], as well as the propensity of delusional ideation in healthy individuals [34]. Our

findings also align with previous literature demonstrating a perceptual decision-making bias

towards sensory information over priors in patients with schizophrenia [35,36]. Thus, a com-

mon attenuation in predictive signalling during perceptual inference substantiates our hypoth-

esis that an overreliance on sensory observations is driven by decreased precision in prior

expectations. Despite this, the increased subjective prior variance could also be a result of an

overreliance on sensory observations, rather than a driver for it, which cannot be decisively

ambiguated from our findings. Moreover, Weilnhammer et al., [37] similarly found that the

severity of perceptual anomalies and hallucinations in people with schizophrenia were associ-

ated with a shift of perceptual inference towards sensory information and away from prior

expectations when deciphering perceptually ambiguous visual stimuli. In fact, deficits in sen-

sory prediction have also been found to correlate with schizotypy and delusion-like thinking

in non-clinical samples [38], suggesting that decreased prior precision could be a stable, trait-

like characteristic of individuals, rather than a mere consequence of deluded or hallucinatory

states in schizophrenia. This not only provides support for the psychosis-continuum perspec-

tive in which frank psychosis is considered an extreme outcome of a continuously distributed

phenotype [18], but also provides insight into the neurocognitive basis of positive symptom

formation in schizophrenia.

Furthermore, although our finding of decreased prior precision could explain the shift in

belief updating to favour sensory evidence, this interpretation is complicated by the finding of

a similar decrease in likelihood precision. Simultaneous aberrancies of heightened uncertainty

in both likelihood and prior information may suggest that people with increasing psychotic-

like experiences have general overestimation of uncertainty. In other words, they perceive

greater instability or uncertainty in their inferred internal representation of the world [13] (see

Fig 7). The misallocation of precision may be hierarchical, such that imprecision in higher

order prior beliefs may lead to a lack of regularisation that renders the environment seemingly

volatile or unpredictable [2]. This would enhance the weight of lower-level prediction errors,

resulting in an overreliance in sensory observations [1,9]. In other words, heightened instabil-

ity in higher order beliefs may be driving the updating of prediction errors, despite simulta-

neous instability in the representation of one’s sensory environment at lower hierarchical

levels. Hence decreased precision in both prior and likelihood information could be explained

through the processing of uncertainty at differ layers of the cortical hierarchy. Layer specific

neuroimaging techniques would be required for empirical verification, providing a promising

avenue for future research [12]. Interestingly, recent research found that high confidence false

percepts (a measure of hallucinatory propensity) were related to stimulus-like activity in mid-

dle input layers of the visual cortex in healthy participants [39]. Task measures of hallucination

propensity were also found to be associated with everyday hallucination severity, suggesting

that hallucinatory-like perception may arise from spontaneous bottom-up activity in input lay-

ers of the visual cortex. This corroborates neural evidence for the bottom-up account of sen-

sory processing in psychosis.
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Moreover, a wealth of previous literature corroborates our finding of aberrantly perceived

task instability across the continuum of psychosis. This is often shown in probabilistic reversal

learning paradigms, which demonstrate increased behavioural switching in dynamic or vola-

tile environments as a predictor of subjectively heightened task or environmental instability

[15,40]. This has been found in people with schizophrenia [40,41], individuals at risk for psy-

chosis [15], and more recently, was found to correlate with the degree of psychotic-like experi-

ences in a neurotypical sample [42]. Similarly, when characterising belief updating on a trial-

by-trial basis, Nassar et al., [43] found that patients with schizophrenia show a generally

reduced precision of beliefs and an inflexibility of belief updating. This finding allowed a

simultaneous explanation of patients completely ignoring new information and persevering

on previous responses (decreased likelihood precision), as well as the overly flexible beha-

vioural adaptation to random noise (decreased prior precision [13]). Thus, our findings align

with this study, augmenting evidence that aberrant perception of task instability due to a

decreased precision in both prior and likelihood information also extends along the contin-

uum of psychosis into non-clinical populations.

Furthermore, our study found little to no relationship between variability in sensory

weighting and psychotic-like experiences from trial-to-trial and across blocks, suggesting that

psychotic-like experiences were not necessarily related to aberrant learning or behavioural

switching in the utilisation of likelihood to prior information in this task. This is contrary to

what we might expect, given the observed association between increasing psychotic-like expe-

riences and a general perception of heightened task instability. To investigate this further, spe-

cific manipulations of environmental volatility could provide ecological utility that the current

study was somewhat lacking [13,44]. This is because certain links with psychopathology or

individual differences may only emerge in an unstable environment [45]. Thus, a more

nuanced approach to investigating trial-by-trial variability in sensory weighting should incor-

porate higher-level of task instability (i.e., volatility), such as blocks where uncertainty in prior

information changes more rapidly compared to blocks where this remains stable [43]. Perhaps

this level of environmental uncertainty is required to elucidate an association between aberrant

switching in sensory weighting and psychotic-like experiences. Additionally, whilst we see a

Fig 7. Visual depiction of the precision weighting of prior and likelihood information found in people with greater psychotic-like experiences. A)
Represents an unbiased integration of prior and likelihood information. B) Represents proposed explanation of findings, depicting a simultaneous decrease in

the precision afforded to prior and likelihood information, where the decrease in prior precision is hypothesized to be driving a shift in the posterior towards

likelihood information (i.e., overreliance on likelihood).

https://doi.org/10.1371/journal.pcbi.1011670.g007
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clear integration of prior and likelihood information in each condition of the task with perfor-

mance verging towards Bayes optimal, there seems to be a slight overweighting of likelihood

information across three of the four conditions (Fig 3). Whilst optimality is not a requirement

for Bayesian inference [46], a general bias towards likelihood information is a limit of the task

which should be investigated further.

Interestingly, the co-occurrence of enhanced subjective uncertainty in likelihood and prior

information was only observed in the larger, validation dataset, and not seen in the original dis-

covery dataset. This exemplifies the benefit of conducting an independent replication, demon-

strating that a sufficient sample size was critical in capturing the demonstrated results. As

psychotic-like experiences are generally sparse in the general population (prevalence of approxi-

mately 7%; [47]), it is unsurprising that to capture such small effect sizes, we require a larger sam-

ple. Small effect sizes are common in the literature regarding psychotic-like experiences as a trait-

like characteristic, with these effects naturally larger in clinical populations. Despite this, the

reported subclinical effects are modest but significant and robustly replicated across both datasets.

We argue that multiple comparisons such as Bonferroni corrections are too conservative to be

applied to this data given that some of the measures are correlated and others determined from

independent datasets. Given that four comparisons (at most) are being made between psychotic-

like experiences and parameters of interest across the analyses, adjusted p-values with Bonferroni

corrections can be seen in S3. This shows that the positive relationship between psychotic-like

experiences and subjective likelihood variance, as well as subjective prior variance, remain signifi-

cant in the larger, validation dataset with these corrections applied. Instead of this approach, we

have incorporating bootstrapped confidence intervals (with 1000 bootstrapped replicates) into

our analyses (also shown in S3 Table), which we use for our interpretations.

Additionally, whilst our findings support the notion that aberrant sensory predictions

extend into the non-clinical continuum of psychosis, paradigms such as the coin task that

orthogonally manipulate the uncertainty of likelihood and prior information have not yet

been empirically tested in clinical samples. Thus, a limit of the current study is that, whilst it is

advantageous to investigate continuously distributed phenomena in healthy populations, it

does not consider distinct neurocognitive discontinuities that may exist between subclinical

and clinical populations [48]. A cross-sectional design sampling from patients with schizo-

phrenia, first episode psychosis, and clinical high risk for psychosis could potentially differenti-

ate the precision afforded to uncertainty across disease trajectory. Therefore, empirical

verification is required to explicitly test the relative weighting of likelihood and prior informa-

tion with the emergence and formation of psychosis across the entire continuum of psychosis.

Another limitation of the study is the lack of attention checks throughout the paradigm.

Despite this, we included quality control measures for online testing such as removing partici-

pants with particularly low mean estimation error scores, as this was deemed to be an indicator

of poor adherence or engagement with the task. Additionally, participants were asked to com-

plete practice tasks prior to completion of the main task, to ensure that they understood what

was required in the main task.

Additionally, competing hypotheses have provided contradictory perspectives on the emer-

gence of hallucinations compared to delusions in schizophrenia [2]. Whilst delusion formation

is often characterised as an overreliance on sensory observations leading to the formation of

false concepts [49], hallucination formation has contrastingly been characterised as abnor-

mally strong priors, leading to the formation of false percepts [10]. Although our data is not

consistent with the overweighting of priors account, our participants did not experience actual

hallucinations as they were sampled from a non-clinical population, hence we cannot

completely rule out this account in hallucinating individuals. Additionally, heterogeneity in

individuals’ proneness to hallucination-like percepts compared to delusional-like ideation was
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not considered in our neurotypical sample. As this may influence one’s relative reliance on priors

to likelihoods across the task, this could provide an alternative explanation for the simultaneous

decrease in prior and likelihood precision found in our study and could also account for heterog-

enous findings in previous literature [50]. In fact, one study showed that the use of prior knowl-

edge varies with the composition of psychotic-like phenomena (in terms of aberrant percepts vs

aberrant beliefs) in healthy individuals [51]. Contrary to this, a recent study found evidence for a

reduced reliance on priors to sensory evidence in relation to both delusion and hallucination

proneness [52], which is consistent with our data and proposed model for the continuum of psy-

chosis (Fig 7). We followed up these findings in the current study to determine whether there was

a similar relationship in CAPE-P subscale scores, namely bizarre experiences, delusional ideation,

and perceptual anomalies [53] (see S2 Fig for a distribution of the subscales in our data). We

found that delusional ideation was positively correlated with subjective prior variance in both dis-

covery and validation sets (see S4 Table and S5 Table). We also found other significant, yet unspe-

cific, relationships although only for the validation set. However, one should be cautious when

interpreting these findings since these subscales are based on limited number of items (bizarre

experiences are defined by 7 items, delusional ideation is defined by 9 items, and perceptual

anomalies are defined by 4 items [53]). Hence, we turn to the interpretation of the 20 item

CAPE-P instead and suggest future research to employ separate measures to compare hallucina-

tory and delusional-like experiences, and their respective association with the precision weighting

of likelihood to prior information in the coin task. Examples of specific measures include Peters

Delusion Inventory [54] and Cardiff Anomalous Perceptions Scale [55] which are designed to

measure delusional ideation and hallucinatory experiences in the general population respectively.

In conclusion, our findings provide evidence that psychotic-like experiences are associated

with an overweighting of sensory evidence relative to prior expectations, which seem to be

driven by decreased precision in prior information. Our findings suggest that psychotic-like

experiences are associated with aberrant precision of encoding uncertainty in both prior and

likelihood information. This provides an interesting platform for understanding and quantify-

ing aberrancies in perceptual processing under uncertainty, and how this relates to the non-

clinical continuum of psychosis.
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S1 Fig. Comparison of mean estimation error performance across trial conditions in A)

the discovery and B) the validation datasets. Demonstrating the variability in mean estima-

tion errors across each of the four the trial conditions to supplement task performance analy-

ses. Conditions: PnLn = narrow prior, narrow likelihood (red dots); PnLw = narrow prior,

wide likelihood (green dots); PwLn = wide prior, narrow likelihood (teal dots); PwLw = wide

prior, wide likelihood (purple dots).
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S2 Fig. Distribution of CAPE-P subscale scores (bizarre experiences, delusional ideation and

perceptual anomalies) in A) the discovery dataset (n = 363) and B) validation dataset

(n = 782).
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S1 Table. Median sensory weights significantly different from Bayesian optimal sensory

weights across all conditions in both discovery and validation datasets.
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S2 Table. Median subjective prior variance scores significantly different from Bayesian

optimal or ‘imposed’ prior variance scores across all conditions in both discovery and
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validation datasets.

(PDF)

S3 Table. Adjusted p-values with Bonferroni corrections for multiple comparisons applied

to main correlations of interest. In the manuscript, correlation analyses compare the associa-

tions between psychotic-like experiences with (1) sensory weight, (2) variability in sensory

weight, (3) subjective likelihood variance (although this is calculated from a separate task) and

(4) subjective prior variance. Given this, four comparisons are (at most) being made across the

analyses. Adjusted p-values for these comparisons are demonstrated here, along with boot-

strapped confidence intervals with 1000 bootstrapped replicates.

(PDF)

S4 Table. Spearman correlation between CAPE-P subscale scores (bizarre experiences,

delusional ideation and perceptual anomalies) and variables of interest (sensory weight,

subjective likelihood variance and subjective prior variance) in the discovery dataset

(n = 363).

(PDF)
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(n = 782).

(PDF)
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