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Which Class Matters? Juxtaposing Multiple Class Environments as Frames-of-Reference 

for Academic Self-Concept Formation 

 
Equally able students have lower academic self-concept in high achieving schools or classes, a 

phenomenon known as the big fish little pond effect (BFLPE). The class (more so than the 

school) has been shown to be the pivotal frame-of-reference for academic self-concept formation 

—a local dominance effect. However, many school systems worldwide employ forms of course- 

by-course tracking, thus exposing students to multiple class environments. Due to the high 

correlation between multiple student environments, the frame-of-reference used for academic 

self-concept formation in course-by-course tracked systems is unclear to date. We addressed this 

unresolved issue by using data from a comprehensive survey that measured the entire population 

of Austrian eighth-grade students in the domain of mathematics in 2012. General secondary 

school students were in the core subjects (i.e., mathematics, German, and English) grouped 

according to ability, whereas regular class composition was the same in all other subjects. Using 

cross-classified multilevel models, we regressed math self-concept on average math achievement 

of students’ school, math class, and regular class. Consistent with the local dominance effect, we 

found the BFLPE on the school level to be weak after controlling for the class levels. We found a 

stronger BFLPE on the regular class level and the strongest BFLPE on the math class level. Our 

study demonstrates the importance of multiple class environments as frames-of-reference for 

academic self-concept formation. 
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Educational Impact and Implications Statement 
 
A positive perception of one’s academic abilities—termed academic self-concept—is a desirable 

educational goal. As a consequence of social comparison processes, academic self-concept is 

assumed to be negatively affected when students are placed in classrooms composed of high 

achieving classmates. We investigated these comparison processes in course-by-course tracked 

systems in which students are members of several class environments. Our findings suggest that 

students build their academic self-concept in a certain domain, for instance in math, to a major 

extent in comparisons with domain-specific class environments (e.g., the math class) and to a 

minor extent with domain-unrelated class environments. Our study contributes to the 

psychological understanding of academic self-concept formation and refines BFLPE implications 

in course-by-course tracked systems: Students’ academic self-concept in a certain domain may be 

hurt when placing them in high achieving domain-specific classes but it will to a lesser extent 

also be hurt when placing them in high achieving domain-unrelated classrooms. 
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Which Class Matters? Juxtaposing Multiple Class Environments as Frames-of-Reference 

for Academic Self-Concept Formation 

Academic self-concept—that is, students’ perceptions of their academic abilities (Marsh 

et al., 2016)—is predicted by the average academic achievement of educational environments 

(i.e., school or class) when controlling for individual achievement differences (Marsh, 1987; 

Marsh & Parker, 1984). In particular, equally able students have lower academic self-concept in 

high achieving schools or classes. This frame-of-reference effect—which has been labeled big 

fish little pond effect (BFLPE; for an overview, see Marsh & Seaton, 2015)—is assumed to be 

induced by social comparison processes in which students compare their academic achievement 

with that of their schoolmates or classmates (Huguet et al., 2009; Marsh, Kuyper, et al., 2014). 

Typically, research on the BFLPE regresses academic self-concept on aggregated 

achievement of either the school or the class level. However, average achievement of educational 

environments is highly correlated, making it difficult to identify the relative strength of both 

frames-of-reference. To overcome this, Marsh, Kuyper, et al. (2014) employed a three-level 

approach and found the class to be the pivotal frame-of-reference for academic self-concept 

formation. In line with the local dominance effect (see Zell & Alicke, 2010), they concluded that 

local comparison information matters the most for ability self-evaluations. 

However, many school systems around the world—for instance, those of many Anglo- 

Saxon countries—group students according to ability in one or more subjects (often in core 

subjects like math) while allowing them to remain in the same regular class for the other 

(untracked) ones. Such an educational practice is referred to as course-by-course tracking 

(Chmielewski, 2014). Students in course-by-course tracked systems are members of at least two 

class environments. In such a situation, the question arises to what extent academic self-concept 

is impacted by the average achievement of multiple class environments. Juxtaposing multiple 
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class environments as frames-of-reference for academic self-concept formation is especially 

interesting as those educational environments are equal regarding their local proximity but might 

differ concerning their domain-specific proximity. 

Previous research was not able to juxtapose multiple class environments as frames-of- 

reference for academic self-concept formation because educational large-scale datasets (e.g., 

PISA, TIMSS) typically do not include information on multiple class environments. And even if 

information on multiple class environments were included, the fact that typically only a 

subsample of students from one school is tested would not allow for calculating reliable 

achievement aggregates on all levels of student nesting. In the present study, we were able to 

overcome this limitation by making use of data coming from the Austrian national educational 

standard assessment from 2012 (BIFIE, 2016; Schreiner & Breit, 2012), a comprehensive survey 

that tested the entire population of Austrian eighth-grade students without special educational 

needs in the domain of mathematics. Austrian general secondary school students were grouped 

according to ability in math, German, and English classes and attended all other subjects in the 

same (untracked) regular class. As the complete student population was tested and information on 

students’ math and regular classes was available, this dataset provided us with an unprecedented 

opportunity for juxtaposing multiple class environments as frames-of-reference for academic 

self-concept formation. 
 
The Big Fish Little Pond Effect and Its Proposed Mechanisms 

 
The BFLPE, namely the finding that academic self-concept is negatively affected by 

school- or class-average achievement is supposed to be the result of social comparison processes. 

Based on classical social comparison theory (Festinger, 1957), there is a human drive for self- 

evaluation that results in students comparing with school- and classmates, consequently building 

their academic self-concept based on these comparisons. Thus, an average-ability student would 
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develop a positive self-concept in low achieving educational environments, whereas the opposite 

would occur in high achieving environments. Several studies support the idea that the BFLPE is 

driven by social comparison processes (Huguet et al., 2009; Marsh, Kuyper, et al., 2014). Note 

that other self-belief constructs, such as academic self-efficacy, differ from academic self-concept 

in that they are prospective rather than retrospective (beliefs about what I can do in the future vs. 

what I have done in the past) and descriptive rather than evaluative (beliefs about how well 

behavior matches external standards vs. beliefs about how well behavior matches personal 

standards). Thus, they are not assumed to be affected by such frame-of-reference effects (e.g., 

Hulleman, 2016; Marsh et al., 2016). Overall, the BFLPE has received strong empirical support. 

First, the effect is generalizable across cultures (e.g., Marsh, Abduljabbar et al., 2014; Marsh & 

Hau, 2003; Nagengast & Marsh, 2012). Additionally, the BFLPE generalizes well over individual 

characteristics as well as characteristics of educational environments (e.g., Lüdtke et al., 2005; 

Seaton et al., 2010; Seaton et al., 2011). Finally, frame-of-reference effects affect other desirable 

outcomes, even though the effects are smaller in size, such as academic effort, interest, 

participation in physical education, and even long-term income (Göllner et al., 2018; Marsh, 

1991; Trautwein et al., 2006; Trautwein et al., 2008) 

Building on work from social psychology (e.g., Cialdini & Richardson, 1980; Snyder et 

al., 1986), there has been speculation that membership in a high achieving educational 

environment might also come with benefits in terms of academic self-concept because students 

“bask in the reflected glory” of successful others. To put this idea to an empirical test, the BFLPE 

model was extended by including a measure capturing the prestige of students’ learning 

environments (Marsh et al., 2000; Trautwein et al., 2009). Students’ perception of their 

educational environment’s status positively affected academic self-concept, and controlling for 

the prestige of students’ educational environment led to an even more negative BFLPE. 
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Membership in a high achieving learning group seems to lead to positive assimilation effects 

which are counterbalanced by contrastive frame-of-reference effects. Similarly, high within- 

school track membership (in contrast to low within-school track membership) positively predicts 

academic self-concept, after controlling for individual and aggregated achievement (Chmielewski 

et al., 2013; Trautwein et al., 2006), suggesting assimilation effects. Again, accounting for 

within-school track led to a more negative BFLPE. In other words, equally able students 

experience a much stronger academic self-concept decline in high achieving learning 

environments when track level is kept constant. Generally, there are two different interpretations 

of such assimilation effects. First, these effects might result from track-level assignment, thus 

being assimilative track-branding effects (Chmielewski et al., 2013). Second, track level might be 

an indicator of students’ prior academic achievement that is not captured by the standardized 

achievement measure, thus positively predicting academic self-concept (Marsh et al., 2018). As 

track level and prior achievement are always correlated, correlational analyses cannot clarify the 

interpretation of track-level effects on academic self-concept. 

Early on, researchers speculated that the BFLPE is driven by grading on a curve or class- 

referenced grading, which is the tendency of teachers to give the best grades to the best students, 

the worst grades to the worst students, and place the others somewhere in-between (Neumann et 

al., 2011). For instance, Marsh (1987) theorized that the BFLPE might be the consequence of 

equally able students getting worse grades in high achieving classes, subsequently leading to 

lower academic self-concept. This idea has been tested by considering teacher-assigned grades as 

an additional predictor variable in the BFLPE model. In this model, controlling for grades 

typically leads to a substantial decline in the size of the BFLPE (e.g., Marsh, 1987; Trautwein et 

al., 2006). Statistically speaking, equally able students with equal grades have only a slightly 

lower academic self-concept in high achieving learning environments. It is important to note that 
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these results do not ensure a causal relationship between grades and the BFLPE. There is still the 

possibility that students compare to each other independent of grades. 

Juxtaposing the School and the Class as Frames-of-Reference for Academic Self-Concept 

Formation 

Early studies on the BFLPE (e.g., Marsh, 1987, 1991; Marsh & Parker, 1984) most 

typically used some measure of school-average achievement to predict academic self-concept. By 

contrast, recent studies more often investigated the effects of class-average achievement on 

academic self-concept (e.g., Marsh et al., 2001; Marsh, Abduljabbar, et al., 2014; Trautwein et 

al., 2006). The decision of choosing the school or the class as students’ learning environment was 

typically guided by the properties of the data to be analyzed. The school was chosen when data 

with a student sample from schools were available. The class was chosen when whole classes 

were drawn. Because previous studies modeled either the school or the class (but not both) and 

because achievement aggregates from multiple student environments are typically highly 

correlated, these examinations were not able to investigate what the pivotal frame-of-reference 

for academic self-concept formation is. Specifically, a student who attends a school composed of 

high-achieving students typically also attends a classroom in which average achievement is high. 

Due to the high correlations between potential frames of reference for academic self-concept 

formation, contextual effects in an ordinary two-level model (e.g., students within schools) might 

result from a noisy reflection of some other frame-of-reference. For instance, a negative effect of 

school-average achievement on academic self-concept (when controlling for individual 

achievement) does not necessarily mean that students form their academic self-concept in 

comparison with their schoolmates. 

From a social comparison literature perspective, clear expectations exist regarding the 

relative importance of the school and the class as frames-of-reference for academic self-concept 
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formation. In several experiments, it was shown that local comparison information supersedes the 

influence of distal comparison information on ability self-evaluations (Alicke et al., 2010; 

Buckingham & Alicke, 2002; Zell & Alicke, 2009). Based on their experimental work, Zell and 

Alicke (2010) hypothesized the local dominance effect in self-evaluation stating that “when 

multiple comparison standards are available for self-evaluation, people rely on the most local 

comparison information while deemphasizing more general, and typically more diagnostic, forms 

of comparison feedback” (Zell & Alicke, 2010, p. 369). 

Marsh, Kuyper, et al. (2014) conducted a study with 15,356 Dutch students nested in 651 

classes and 95 schools and juxtaposed the school and the class as frames-of-reference for 

academic self-concept formation. When modeled separately, school-average achievement, as well 

as class-average achievement, negatively predicted academic self-concept, controlling for 

individual achievement. However, when juxtaposed in a joint model, class achievement 

negatively predicted academic self-concept, whereas school achievement had no effect. These 

results led Marsh, Kuyper, et al. (2014) to conclude, “This might even suggest that school context 

really has no effect and its apparent effect is merely a reflection that schools with high school 

average achievement are made up of classes with high class-average achievement” (p. 58). 

Similarly, Liem et al. (2013), using a sample of 4,461 Singaporean students from 136 classes and 

9 schools, found significant class effects but no school effects in a joint model. 

Juxtaposing Multiple Class Environments as Frames-of-Reference for Academic Self- 

Concept Formation 

In school systems around the world, including those in the United States, the United 

Kingdom, Australia, Canada, and New Zealand, many schools track students on a course-by- 

course basis (Chmielewski, 2014). In contrast to between-school tracking (students from different 

ability levels attend different schools) and within-school streaming (students from different 
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ability levels attend the same school but are then assigned to different streams for all subjects), 

course-by-course tracking is defined as “offering courses at varying levels of difficulty in one or 

more subjects within a school” (Chmielewski, 2014, p. 293). In the following, we will sometimes 

—for reasons of simplicity—refer to course-by-course tracking as “tracking”. 
 

In course-by-course tracked systems students are, depending on the subject, assigned to 

different ability tracks that in turn are taught in separate classrooms. These systems usually do 

not assign students to ability tracks in all of the subjects. For instance, Loveless (2013) showed 

for the United States that course-by-course tracking in math occurs much more frequently 

compared with language, science, or history. The fact that students in course-by-course tracked 

systems are not ability tracked in all subjects typically leads to students attending non-tracked 

subjects in the same regular class. 

In course-by-course tracked school systems, in which students belong to several class 

environments, students can form their academic self-concept in a certain domain, for example, in 

math, by comparisons with classmates from their domain-specific class (e.g., math class) and 

their regular class. In relation to the local dominance effect, both classes are local as students are 

directly exposed to classmates from both classes in daily teaching lessons. However, they differ 

concerning their domain-specific proximity. Thus—according to the local dominance theory— 

one would expect the domain-specific class to be the pivotal frame-of-reference for academic 

self-concept formation in that domain. 

In course-by-course tracked systems, the question is not only to which class environments 

students compare but also how respective comparison processes might differ regarding 

assimilation effects. Based on previous research, one would expect that controlling for domain- 

specific track level should increase the BFLPE on the domain-specific class level because it 

controls for assimilation (Chmielewski et al., 2013). For instance, students in high achieving 
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math classes are more likely to be high math track members, resulting in a confounding of 

contrast and assimilation. However, one would not expect that students in high achieving regular 

classes are more likely to be high math track members. In other words, there might not be such a 

confounding of contrast and assimilation processes. Thus, controlling domain-specific track level 

is not expected to increase a BFLPE on the regular class level. 

In course-by-course tracked systems, the question is not only to which class environments 

students compare themselves but also how respective comparison processes might differ 

regarding grading on a curve. Whereas previous research found frame-of-reference effects of 

domain-specific class environments to be mediated by grades and interpreted this result as a 

consequence of class-referenced grading stimulating the BFLPE (Marsh, 1987; Trautwein et al., 

2006), no study exists that has investigated if this is the case for domain-unrelated class 

environments. Investigating this question is especially important as it contributes to a better 

understanding of the mechanisms of frame-of-reference effects on different class levels. Based on 

previous research, one would expect that controlling for domain-specific grades will decrease the 

BFLPE on the domain-specific class level because it controls for the teachers’ tendency to 

conduct class-referenced grading. For instance, students in high achieving math classes are 

provided with worse math grades resulting in confounding of the BFLPE and grading on a curve. 

However, one would not expect that controlling domain-specific grades will increase the BFLPE 

on the regular class level as students in high achieving regular classes are not expected to be 

provided with worse grades. 

To date, research focused on only one class environment—in most cases the domain- 

specific class environment—as the frame-of-reference for academic self-concept formation. To 

our knowledge, no study has juxtaposed several class environments as frames-of-reference for 

academic self-concept formation. One reason for that is that educational large-scale datasets 
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usually do not contain information about multiple class memberships. Another reason for the 

scarce research on this issue is that it relies on survey designs that test all students within sampled 

schools. Not testing complete schools will lead to differential sampling rates for different classes 

that will in turn result in differences in the reliability of aggregates and biased estimates. 

The juxtaposition of multiple class environments as frames-of-reference for academic 

self-concept formation has high theoretical and practical relevance. Regarding the former, it 

captures the full complexity of academic self-concept formation in course-by-course tracked 

systems—an issue that previous research neglected. Regarding the latter, disentangling 

contextual effects of multiple class environments comes with implications for the composition of 

learning environments. 

The Present Study 
 

The present study is based on data from the Austrian national educational standard 

assessment in 2012 (BIFIE, 2016; Schreiner & Breit, 2012), which measured all Austrian eighth- 

grade students in the domain of math. Austrian general secondary school students were assigned 

to one of three tracks (low, medium, high) in the core subjects of mathematics, German, and 

English, based on teachers' subjective impression of students' achievement. Students from the 

different tracks were usually taught in separate classrooms according to curricula that differed in 

performance requirements. As there might have been students who were good in all three core 

subjects, the class composition of core subjects might have been more or less similar. Secondary 

school students attended all other subjects (e.g., history, geography, biology, chemistry, physics, 

music, domestic education) in the same regular class that was not grouped according to ability. 

Thus, in our multilevel data, students (level 1) were nested in the cross-classification between 

math classes (level 2a) and regular classes (level 2b) that were nested within schools (level 3; see 
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Figure 1 for a graphical description of the data structure; a more detailed explanation of the 

complex data structure can be found in the Data section). 

As the Austrian national educational standard assessment in 2012 (BIFIE, 2016; Schreiner 

& Breit, 2012) identified students’ school, math class, and regular class and additionally 

measured all students—what enabled us to build reliable math achievement aggregates on all 

levels of the data hierarchy—these data were perfectly suited for juxtaposing multiple class 

environments as frames-of-reference for academic self-concept formation, thus filling the 

research gap concerning the pivotal frames-of-reference for academic self-concept formation in 

course-by-course tracked systems. In order to take a closer look at the different mechanisms of 

the level-specific frame-of-reference effects, we were also interested in how additionally 

modeling math track and math grades affected the different contextual effects. In detail, we 

hypothesized the following: 

Hypothesis 1 (H1; see also Figure 2a): When considered separately, each of the three 

math achievement aggregates (school, math class, and regular class math achievement) is 

expected to have a negative effect on math self-concept, controlling for individual math 

achievement. Thus, we expected to find a school, a math class, and a regular class BFLPE. 

Hypothesis 2 (H2; see also Figure 2b): When all three math achievement aggregates are 

considered together, controlling for individual math achievement, we expected the math class 

BFLPE to be more negative than the regular class BFLPE, which we in turn expected to be more 

negative than the school BFLPE. 

Hypothesis 3 (H3; see also Figure 2c): When additionally modeling track level, we 

expected it to contribute positively to math self-concept and result in a more negative math class 

BFLPE. However, we did not expect it to substantially change the regular class BFLPE. In an 

exploratory endeavor, we were also interested in whether effects differed between pure and 
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mixed math classes (i.e., math classes with students from the same math track [pure] vs. math 

classes with students from different math tracks [mixed]). 

Hypothesis 4 (H4; see also Figure 2d): In a preliminary analysis, we were interested in 

whether grades are impacted by frame-of-reference effects. When additionally modeling grades 

in the BFLPE model, we expected it to contribute positively to math self-concept and result in a 

less negative math class BFLPE. However, we did not expect it to substantially change the 

regular class BFLPE. 

Method 
 
The Austrian Educational System 

 
In Austria, children attend primary school from Grades 1 to 4, then attend secondary 

school from Grade 5 onward (for a detailed description of the Austrian school system, see 

Bruneforth et al., 2016). Depending on their primary school achievement, students attend either 

(a) academic or (b) general secondary school. Academic secondary school provides students with 

deepened general knowledge and requirements for a transition to university. In the school year 

2011-2012—in which eighth-grade student data for the present study were collected—about 33% 

of all Austrian eighth-grade students attended this school type. In contrast, general secondary 

school prepares students for vocational training or the transition to higher education. In the school 

year 2011-2012, about 67% of all Austrian eighth-grade students attended this school type 

(Schreiner & Breit, 2012). Because our study’s main goal was to juxtapose multiple class 

environments as frames-of-reference for academic self-concept formation—and this could only 

be done with the subsample of course-by-course tracked students from general secondary schools 

—we focused on this group of students in the present paper. For reasons of transparency, we 

report descriptive statistics and analyses on the pivotal frames-of-reference for the total student 
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sample as well as the academic secondary school subsample in the supplemental material (see 

Tables S12–S15). 

Students attending general secondary school were assigned to one of three tracks (low, 

medium, high) in three core subjects including mathematics. Generally, students from different 

tracks were provided with different curricula that differed concerning the topics to be addressed 

as well as the depth with which the topics were treated. However, in the end, it was left to the 

teacher to decide how to design the curriculum. In math classes with students from different math 

tracks, it was also left to the teacher to decide how to deal with math class heterogeneity in terms 

of track level. Some teachers differentiated their teaching by instructing students from one track 

while students from the other tracks worked on their own. Some teachers provided very much the 

same classroom instruction to students from different tracks, however, provided tests with 

varying degrees of difficulty according to students’ track level. Other teachers provided the same 

tests to students from varying tracks but applied different grading schemes. Note that beginning 

in the school year 2012-2013, course-by-course tracking was successively abolished and does not 

exist anymore today (Eder et al., 2015). 

Data 
 

In Austria, the Federal Institute for Educational Research, Innovation, and Development 

of the Austrian School System (BIFIE) conducts national educational monitoring. The 

examinations of Austria's educational standards are conducted as comprehensive surveys, aiming 

at measuring all Austrian students attending the fourth or the eighth grade without special 

educational needs. The national educational standard assessment from 2012 (BIFIE, 2016; 

Schreiner & Breit, 2012), which is the database for the present study, was conducted in May 

2012. The assessment was aimed at testing all Austrian eighth-grade students without special 

educational needs in the domain of mathematics. About 4% of the students could not be tested, 
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mostly due to absence at the main and alternative testing dates. The Austrian national educational 

standard assessment is prescribed by law and does not require the consent of students or parents. 

Data access was approved by the BIFIE and required consent to data protection regulations. 

Our sample included 50,208 students (48% female, M age= 14.44 years) from 1,078 
 
general secondary schools, 3,449 math classes, and 2,729 regular classes. On average, there were 

 
M = 3.20 (SD = 1.11) math classes and M = 2.53 (SD = 0.96) regular classes per school with M = 

 
14.56 (SD = 5.32) students per math class and M = 18.40 (SD = 4.10) students per regular class. 

 
The math classes were on average smaller than regular classes because schools that contained 

only two regular classes split the student body into three math classes according to the three track 

levels. As noted above, math classes typically contained students from one and the same math 

track. However, in small schools, math classes might also have contained students from different 

math tracks. Generally, 73% of all math classes were composed of students from one and the 

same math track. In the subsample of students from mixed math classes, we found that every 

student attends his math class with M = 12.54 (SD = 6.54) other students from his regular class, 

indicating a moderate overlap between both class environments for students in mixed math 

classes. Generally, students spent about 15% of the weekly lesson time in each of the three core 

subjects (in total 45%) and the other 55% in their regular class. 

Instruments 
 

Math self-concept. Math self-concept (MSC) was assessed using four items (i.e., Usually 

I am good in mathematics; Mathematics is harder for me than for many of my classmates; I am 

just not good in mathematics; I learn quickly in mathematics), which were answered on a 4-point 

Likert scale ranging from 1 (strongly disagree) to 4 (strongly agree; BIFIE, 2012). The academic 

self-concept scale used in the Austrian Educational Standard Assessment basically corresponds to 

the academic self-concept scale employed by the TIMSS study (the TIMSS study comprises one 
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additional item I am good at working out difficult mathematics problems; Mullis et al., 2016). 

Multiple studies successfully used this scale (e.g., Guo et al., 2018) and confirmed its construct 

validity by demonstrating measurement invariance across cultural contexts (e.g., Marsh et al., 

2015; Marsh, Abduljabbar, et al., 2014) or gender (e.g., Abu-Hilal et al., 2013). We interpret this 

body of research as evidence for our scale’s psychometric quality. For subsequent analyses, a 

mean score comprising the items was constructed (at least two items had to be completed for 

mean score calculation; α = .85). As the procedure of aggregating Likert scale items by 

calculating mean scores depends on the equidistance between adjacent scale points (Carifio & 

Perla, 2008), we also created IRT-based academic self-concept WLE scores based on the rating 

scale model (de Ayala, 2009). These WLE scores correlated with the mean scores by r = .96. 

Additionally, we ran our main analyses with IRT-based academic self-concept WLE scores as the 

outcome. The results did not substantially differ from those using the mean scores (Tables S16 

and S17). Table 1 contains descriptives for all model variables (for the level-specific correlations, 

see Table S10). Average MSC in our sample was M = 2.97 (SD = 0.76). Most of the MSC 

variation was located on the individual level ( ρ̂ ind = .77). Math class variation in MSC was lower 

( ρ̂mcl = .18), and variability on the regular class level ( ρ̂ rcl  = .00) and the school level ( ρ̂ sch = .05) 

was even lower. The low variance proportions on the higher level student hierarchies are a 

common finding in research on the BFLPE (e.g., see Nagengast & Marsh, 2012; Trautwein et al., 

2006). The relatively low variation in academic self-concept between educational environments 

is consistent with BFLPE theory proposing that students build their academic self-concept as a 

consequence of social comparison processes within educational environments. Table S1 in the 

online supplemental material presents the descriptives for each math track separately. Students in 

the high track (M = 3.16, SD = 0.70) had higher MSC than those in the medium track (M = 2.91, 

SD = 0.73) and those in the low track (M = 2.55, SD = 0.79). To assess the quality of our 
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academic self-concept scale, we conducted tests of differential item functioning with ordinal 

logistic regression techniques (Crane et al., 2006) for gender, migration background and track 

level using the R-Package lordif (Choi et al., 2011). We did not find evidence for meaningful DIF 

based on the pseudo R2 measure (Jodoin & Gierl, 2001; Kim et al., 2007; Zumbo, 1999) as well 

as β differences (Crane et al., 2004; Crane et al., 2007; Jodoin & Gierl, 2001). 
 

Math achievement. Math achievement (MACH) was measured using a math 

competencies test that was based on the competency model of the Austrian educational standards 

(Schreiner & Breit, 2012). The competency model of the Austrian educational standards—similar 

to the PISA concept of mathematical literacy (OECD, 2017a)—focuses on the mastery of 

processes, the understanding of concepts, and the ability to deal with different everyday situations 

and problems within a competence area on the basis of sustainably networked knowledge. The 

test lasted about 90 minutes and was delivered by means of a multi-matrix design that contained 

several test booklets. Students completed approximately 48 items, mostly being presented in a 

multiple-choice format. There also existed a limited amount of half-open and open item formats. 

The BIFIE provides ten plausible values (PVs) that represent the likely distribution of a 

person’s ability (von Davier et al., 2009; Wu, 2005). Large-scale assessment studies typically use 

PVs because such a procedure allows taking into account the uncertainty of person parameter 

estimation, thus allowing for correctly estimating associations with other variables. However, due 

to the multi-matrix design, it was not possible to calculate marginal reliabilities for the PVs. 

Thus, we calculated an alternative reliability coefficient as it is used in PISA, deducting the 

within-person PV variance proportion from one. A reliability coefficient close to one indicates 

that PVs vary within individuals only to a small extent, thus pointing to high measurement 

accuracy (Adams, 2005; OECD, 2017b). This reliability coefficient was 0.91. MACH showed 

high variation on the individual level ( ρ̂ ind = .38) and the math class level ( ρ̂mcl = .43), whereas 
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variability on the regular class level ( ρ̂ rcl  = .06) and the school level ( ρ̂ sch = .14) was lower. This 

finding empirically underlines the group assignment mechanism. Average MACH was M = 

504.24 (SD = 86.85). MACH correlated with MSC by r = .39. Students from the high math track 

(M = 564.77, SD = 69.50) had higher MACH as compared to students from the medium track (M 

= 477.38, SD = 59.10) and the low track (M = 414.02, SD = 56.06). 
 

Math grade. Students self-reported their math grade (MGRA) in the last half-year report 

card. As students were measured in May 2012 and report cards were provided in February 2012, 

this kind of performance feedback was still relatively current. Generally, it can be assumed that 

self-reported grades provide a reliable measure of actual grades (Sticca et al., 2017). In Austria, 

grades are given on a scale from 1 to 5 with 1 representing the best grade. For subsequent 

analyses, we inverted the grade variable so that higher grades reflect higher achievement. MGRA 

mainly varied on the individual level ( ρ̂ in d  = .63) with variance proportions on the math class 

level ( ρ̂mc l = .19), the regular class level ( ρ̂ rcl  = .07), and the school level ( ρ̂ sch = .10) being 

substantially smaller. Average MGRA was M = 3.19 (SD = 0.94). The correlation between 

MGRA and MACH was r = .39. 

Math track. Students self-reported the math track they were associated with. Math track 

can be regarded as a level 1 variable as there where some math classes that contained students 

from several math tracks (also see above). Generally, track assignment was mainly based on 

teachers' subjective impression of their students' achievement. We created two dummy variables 

for the low and the high math tracks with medium math track representing the reference category. 

Statistical Analyses 

We applied multilevel linear regression analyses (Hox et al., 2017; Raudenbush & Bryk, 

2002; Snijders & Bosker, 1999) using the statistical computing software R (R Core Team, 2008) 

and the package lme4 (Bates et al., 2015). Generally, all analyses were run with 10 datasets that 



20 
 

1  2 1  2
  

1
 
 

differed concerning the achievement variables (10 plausible values are provided by the BIFIE). 

Results then were pooled by Rubin’s (1987) rules using the lmer_pool function drawn from the 

package miceadds (Robitzsch et al., 2018). 

We addressed our research question by calculating multilevel models in which we 

regressed math self-concept on math achievement aggregates on all levels of student nesting. In 

these models, level 1 variables were standardized and all three achievement aggregates (math 

achievement for level 3 school, level 2a math class, and level 2b regular class) were calculated 

based on the standardized measure, but not re-standardized. As a result, all math achievement 

variables are in the same metric, namely standard deviations of individual math achievement, 

making coefficients comparable across levels and models. By grand mean centering of level 1 

variables, respective higher level effects can be interpreted as effects of the higher level 

aggregates, controlling for individual variables, also referred to as contextual effects (Enders & 

Tofighi, 2007). We also ran our analyses using a centering within cluster centering (CWC) 

approach. The respective results can be found in the supplemental material (Table S11). 

For juxtaposing multiple class environments as frames-of-reference for academic self- 

concept formation, we regressed math self-concept on individual math achievement and math 

achievement aggregates at the school, the math class, and the regular class levels: 

Self −concepti( j , j )k=γ 0000+γ 1000 ∙ achievementi ( j , j )k +γ 0001 ∙ school achievementl+ γ 0100 ∙math class achievement j k+ 
 

γ0001, γ0100, and γ0010 can be interpreted as the BFLPEs on the school, the math class, and 

the regular class levels. Respectively v000k , u0 j 0 k, and u0 0 j k are the random school, math class, 

and regular class effects. ei( j , j )k is the residual term. The residual terms are assumed to be 

normally distributed and independent of each other (Beretvas, 2011). 

1  
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In our modeling sequence, we started by first regressing academic self-concept on the 

average achievement measure on the different levels separately. We calculate these models 

because they illustrate the widespread procedure of considering only one out of several 

educational environments. However, we note that modeling only average achievement scores 

from all levels of student nesting simultaneously reveals the pivotal frames-of-reference for 

academic self-concept formation as it controls for the confounding of the aggregate achievement 

measures. 

We ran all our statistical models using a complete case analysis approach (also known as 

“listwise deletion”). Thus, cases that had missing values on at least one model variable were 

excluded. The procedure resulted in exclusion rates between 1 and 8%, depending on the 

statistical model. Research on missing data suggests that when the loss of cases is small—like it 

was in our study—a complete case analysis will result in negligible parameter bias (Graham, 

2009). However, we also conducted a robustness check, in which we calculated all models with 

multiply imputed data (Table S7). The results were the same as for the complete case analysis 

approach. 

Results 
 
Separate BFLPEs (H1) 

 
Before starting the actual modeling procedure, we estimated an intercept-only model in 

order to estimate the variance proportions of academic self-concept on the different levels of the 

modeling hierarchy. As already mentioned in the method section, the variance proportions were 

77% (individual), 18% (math class), 0% (regular class), and 5% (school). In H1, we assumed that 

when considered separately, each of the three math achievement aggregates (school, math class, 

and regular class math achievement) should negatively predict math self-concept, controlling for 

individual math achievement. As shown in Table 2 and consistent with our hypothesis, we found 
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BFLPEs on the school (Model 1; b = -.42, p < .001, 95% CI = [-.45, -.39]), the math class (Model 

2: b = -.43, p < .001, CI = [-.45, -.41]), and the regular class levels (Model 3; b = -37, p < .001, CI 

= [-.39, -.35]) when modeled separately. Some of the variance components (e.g., on the math 

class as well as the regular class level) were higher than in the empty model. Note that in 

multilevel regression models—in contrast to ordinary single-level regression models—the 

inclusion of new predictors can increase higher level variance in the outcomes (Gelman, 2008). 

Pivotal Frames-of-Reference (H2) 

In order to reveal the pivotal frames-of-reference for academic self-concept formation, we 

examined math achievement aggregates on all levels of student nesting simultaneously in one 

model (Model 4; see Table 2). In H2, we expected the math class BFLPE to be more negative 

than the regular class BFLPE and the regular class BFLPE to be more negative than the school 

level BFLPE. We found the math class BFLPE to amount to b = -.37, p < .001, 95% CI = [-.39, 

-.35], whereas the regular class BFLPE was b = -.11, p < .001, CI = [-.15, -.08] and the school 

BFLPE was b = -.06, p = .004, CI = [-.10, -.02]. Whereas the math class BFLPE was smaller than 

the regular class BFLPE on an inferential level (p < .001), this was not the case for the regular 

class BFLPE and the school BFLPE (p = .157). The corresponding interpretation is that equally 

able students in equally able schools and regular classes had a substantially lower self-concept in 

high achieving math classes. Equally able students in equally able schools and math classes had 

lower self-concept in high achieving regular classes, but equally able students in equally able 

math and regular classes had only a little lower self-concept in high achieving schools. These 

results are in line with local dominance theory as the size of the level-specific BFLPEs differs as 

a function of the proximity of respective learning environments. The variance proportions were 

72% (individual), 13% (math class), 6% (regular class), and 9% (school). 

Track Level and the BFLPE (H3) 
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Next, we modeled math track as an additional predictor variable (Model 5; Table 3). We 

found high math track students to have a more positive self-concept as opposed to medium track 

students (b = .19, p < .001, 95% CI = [.17, .22]). Conversely low track students had lower self- 

concept (b = -.32, p < .001, CI = [-.35, -.30]) as opposed to medium track students. In line with 

H3, the math class BFLPE changed (from b = -.37, p < .001, 95% CI = [-.39, -.35] in Model 4) to 

b = -.53, p < .001, CI = [-.56, -.51]. This change was also supported on an inferential level (95% 

CIs did not overlap). Thus, equally able students in equal math tracks experienced a more severe 

math class BFLPE. Also in line with H3, the regular class BFLPE did not change substantially 

from b = -.11, p < .001, CI = [-.15, -.08] in Model 4 to b = -.09, p < .001, CI = [-.13, -.06] in 

Model 5 (95% CIs did overlap). The school BFLPE did change substantially, from b = -.06, p 
 
= .004, CI = [-.10, -.02] in Model 4 to b = .05, p = .024, CI = [-.01, .09] in Model 5 (95% CIs did 

 
not overlap). The variance proportions were 72% (individual), 13% (math class), 7% (regular 

class), and 8% (school). 

To check if associations differed between students from pure and mixed math classes, we 

calculated an additional set of analyses in which we included all interactions between a “mixed” 

dummy variable and the model variables (Table 4). Mixed math classes consisted of students 

from different math tracks, whereas pure math classes included classes with students from the 

same math track. Generally, we did not find differences in the frame-of-reference effects between 

students from mixed and pure math classes. However, we indeed found differences in the track- 

level effects. Students in mixed math classes experienced more negative track-level effects from 

the low track as indicated by the negative interaction between the low track and the mixed 

dummy (b = -.19, p < .001). Additionally, students in mixed math classes experienced a more 

positive track-level effect from the high track as indicated by the positive interaction between the 

high track and the mixed dummy (b = .14, p < .001). 
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School Grades and the BFLPE (H4) 
 

To investigate the frames-of-reference for grade provision, we regressed grades on 

achievement aggregates on all levels of student nesting (see Table 5). As expected in H4, we 

found the math class average achievement effect to be most pronounced (b = -.30, p < .001). We 

found the school average achievement effect to be less negative (b = -.11, p < .001) and the 

regular class effect to be positive (b =.07, p < .001). 

Following this, we modeled math grades (in addition to standardized achievement on all 

levels of student nesting) as an additional predictor of academic self-concept (Model 6; see Table 

3). We found math grades to have a strong positive effect on math self-concept (b = .39, p < .001, 

95% CI = [.38, .40]). Students with better grades had higher self-concept. In line with H4, we 

found the math class BFLPE to be substantially reduced (from b = -.37, p < .001, 95% CI = [-.39, 

-.35] in Model 4) to b = -.26, p < .001, CI = [-.28, -.24]. This change was also supported on an 

inferential level (95% CIs did not overlap). Additionally we found that the school (b = -.02, p 

= .297, CI = [-.06, .02]; b = -.06 in Model 4) and the regular class BFLPEs (b = -.14, p < .001, CI 
 
= [-.18, -.11]; b = -.11 in Model 4) were not substantially changed by the inclusion of school 

grades (95% CIs did overlap). This suggests that equally able students with equal grades did not 

experience a more or less severe school or regular class BFLPE. The variance proportions were 

73% (individual), 12% (math class), 7% (regular class), and 9% (school). 

Robustness Checks and Additional Analyses 
 

To check the robustness of our results, we ran additional sets of analyses. First, as the 

academic self-concept item “Mathematics is harder for me than for many of my classmates” 

directly referred to social comparisons, we reran all models with a self-concept score in which 

this item was excluded. This did not change the results (Table S2). Second, we reran all models 

with the inclusion of covariates, namely sex, age, SES, and migration background. Also, this did 
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not substantially change the results (Table S3). Third, we ran additional analyses with math class 

average track level instead of track level. We did this because prestige measures in the 

assimilation effects literature often represent class-level variables. In our main analyses, this was 

not true for students from math classes that contain students from several math tracks. Modeling 

average track level instead of track level did not substantially change the results (Table S4). In 

additional exploratory analyses, we also calculated the interactions between the track-level 

dummies as well as the BFLPEs on the different levels. We found that low-track students 

experienced a more positive school-level BFLPE as opposed to medium-track students, whereas 

the opposite was true for high-track students (Table S5). Furthermore, high-track students 

experienced a more negative math class level BFLPE as opposed to medium-track students but a 

more positive regular class level BFLPE. We also calculated all models with only the social 

comparison item as the dependent variable. The results were the same as for the complete scale 

(Table S6). Moreover, we calculated all models with the help of multiply imputed data (Table 

S7). The results were the same as for the complete case analysis approach. Additionally, we ran 

all analyses for the subsample of students from math classes that contain only students from the 

same track (Table S8). This did not substantially change the results. Finally, in an exploratory 

endeavor, we also conducted moderation analyses in which we specified the interactions between 

the achievement aggregates and sex, age, migration, and SES (Table S9). None of these 

interactions were statistically significantly different from zero. 

Discussion 
 

When regressing math self-concept on math achievement on all levels of student nesting, 

math class achievement had the strongest negative effect (math class BFLPE), regular class 

achievement had a less negative effect (regular class BFLPE), and school achievement had the 

least negative effect (school BFLPE). Additionally, controlling for track level increased the math 
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class BFLPE but did not substantially change the regular class BFLPE. Additionally, controlling 

for grades decreased the math class BFLPE but did not substantially change the regular class 

BFLPE. In sum, our study suggests that in course-by-course tracked systems, multiple class 

environments may act as frames-of-reference for academic self-concept formation and that 

mechanisms of respective social comparison processes might differ from each other. 

Our paper offers several unique contributions to the BFLPE literature and more broadly to 

the literature on academic self-concept formation. Our study’s overall contribution is the 

investigation of the BFLPE and its potential mechanisms in course-by-course tracked systems in 

which students are members of not one but multiple class environments. More specifically, our 

study is the first to (a) juxtapose multiple class environments as frames-of-reference for academic 

self-concept formation and (b) investigate assimilation and grading on a curve as a potential 

mechanism for frame-of-reference effects of these multiple class environments. Regarding (a) we 

found the (domain-specific) math class achievement and to a weaker extent the (domain- 

unrelated) regular class achievement to negatively predict domain-specific academic self- 

concept. This finding suggests that students in course-by-course tracked systems evaluate their 

abilities against students from not one but multiple class environments. Regarding (b) we found 

BFLPEs of multiple class environments to differentially react to controlling for track level and 

grades. The math class BFLPE increased when controlling for track level and decreased when 

controlling for grades; in contrast, there was no substantial change to the regular class BFLPE. 

One interpretation of our results is that math class BFLPE is counterbalanced assimilation and 

associated with grading on a curve, whereas this is not the case for the regular class BFLPE. 

Additionally, our study contributes to the educational psychological literature by investigating 

differential track-level effects for students from math classes that contain students from the same 

math track (pure math classes) and students from math classes that contain students from 
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different math tracks (mixed math classes). We found more pronounced track-level effects in 

mixed math classes, suggesting track-level saliency to amplify this prestige effect. Also in 

additional analyses, we investigated frame-of-reference effects on grades in course-by-course 

tracked school systems. We found grades to be negatively predicted by math class and to a lower 

extent also by school achievement, suggesting that teachers conduct class- and school-referenced 

grading. 

Pivotal Frames-of-Reference for Academic Self-Concept Formation 
 

Generally, we found all math achievement aggregates on all levels of student nesting 

(math class, regular class, and school) to negatively predict math self-concept when modeled 

separately. However, when conjointly modeling all these predictors, the math class BFLPE was 

dominant. These results provide renewed evidence that the use of traditional large-scale datasets 

that do not allow for modeling all levels of student nesting is most likely to result in biased 

estimates of level-specific BFLPEs. 

When conjointly modeling math achievement aggregates on all levels of student nesting, 

we found a small school BFLPE. This result is somewhat in contrast to that of Marsh, Kuyper, et 

al. (2014) who did not find a school BFLPE when class achievement was taken into account. 

However, Marsh, Kuyper, et al. (2014) conducted their study with a Dutch student sample in 

which students were tracked in relation to all classes. We also note that the very large sample size 

in our study meant that even a small BFLPE at the school level was highly significant. 

When conjointly modeling math achievement aggregates on all levels of student nesting, 

we also found a regular class BFLPE that was smaller than the math class BFLPE. As both 

educational environments might be considered to be similar concerning their local proximity but 

differ concerning their domain-specific proximity, these results are in line with—but also clarify 

and extend—local dominance theory. But how can average math achievement of regular classes 
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affect students’ math self-concept? Our explanation is that it is likely that students had a 

relatively accurate perception of the math achievement of regular classes because track 

membership was highly salient. Thus, students might have had lower math self-concept in regular 

classes with high math achievement as a consequence of being surrounded by lots of students 

from the high math track. Conversely, students might have had higher math self-concept in 

regular classes with low math achievement as a consequence of being surrounded by lots of 

students from the low math track. 

Track Level and the BFLPE 
 

When additionally modeling track level, we found students from higher math tracks to 

have higher math self-concept. One interpretation of this finding is that students experienced 

assimilative track branding effects (e.g., "I am in a high math track, thus I am good at math”). 

However, as already noted in the introduction, information on track level is confounded with 

students’ prior achievement, as track designation is based on prior achievement (Marsh et al., 

2018). Unfortunately, we cannot resolve these opposing interpretations with data available in the 

present investigation. Thus, the disentanglement of positive track branding effects and effects of 

prior achievement is a fruitful direction for future research. 

When additionally modeling track level, the math class BFLPE increased, whereas this 

did not change the regular class BFLPE. We interpret this finding as a consequence of the math 

class BFLPE being counterbalanced by assimilation, whereas this was not the case for the regular 

class BFLPE. This result suggests that frame-of-reference effects of multiple class environments 

might differ in their mechanisms. 

In addition, we found students from mixed math classes to experience more pronounced 

track-level effects on academic self-concept. We interpret this as a consequence of increased 

salience of track level in mixed math classes. 
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School Grades and the BFLPE 
 

We found school grades to be negatively predicted by math class achievement and school 

achievement, whereas the effect of regular class achievement was slightly positive. This result 

suggests that teachers—next to providing grades on a class-referenced basis—additionally grade 

on a school-referenced basis. The rather unexpected frame-of-reference effect on the school level 

may result from two aspects. First, several math classes from one school might be taught by the 

same teacher. These teachers might evaluate students in their classes on the same scale, for 

instance with the same tests, which induced the frame-of-reference effect on the school level. 

Unfortunately, no teacher ID is provided in the data so we are not able to empirically test our 

assumption. Another explanation for our finding might be that math teachers use common testing 

standards. For instance, they might use identical test materials and standardized result protocols, 

which are comparable across classes within schools. We also found that regular-class 

achievement positively affected grades when controlling for achievement on all other levels of 

student nesting. This finding is somewhat surprising as we would not have expected any 

associations between regular class achievement and grades. In other words, why should teachers 

provide better grades for students that come from a high achieving regular class? We can only 

speculate about possible mechanisms. For instance, teachers might perceive students from high 

achieving regular classes to be more competent, thus providing them with better school grades. 

When math grades were included in the model, there was a substantial positive effect of 

math grades on math self-concept. Additionally, the math class BFLPE decreased substantially 

whereas this was not the case for the regular class BFLPE. We interpret this finding in that the 

math class BFLPE was associated with grading on a curve. This result suggests that in frame-of- 

reference effects of multiple class environments might differ in their mechanisms. As already 

noted in the introduction, previous research interpreted this to mean that the BFLPE was caused, 
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at least in part, by grading-on-a-curve driving the BFLPE (e.g., Marsh, 1987; Trautwein et al., 

2006). However, hypothesized causal effects are difficult to test with correlational data. Indeed, 

recent discussion suggests that there is a strong evolutionary basis for social comparison 

processes (Frank, 2011). Marsh et al. (2018) argued that this explains why the BFLPE is so cross- 

culturally robust, and this supports claims that social comparison processes underpinning the 

BFLPE are pan-human and universal (Marsh & Seaton, 2015). From this perspective, it might be 

possible that the social comparison processes underlying the BFLPE are so strong that they are 

independent of the provision of class-referenced grades because students socially compare 

themselves in relation to other students in a similar fashion whether or not they are assigned with 

school grades. Thus, for example, would the size of the BFLPE decrease if students were not 

assigned grades at all or were assigned grades in relation to a common metric rather than grading 

on a curve? Although beyond the scope of the present investigation, we note that more research is 

needed to determine whether grading-on-a-curve is a causal contributor to the BFLPE or merely 

an effect that is correlated with the BFLPE. 

Limitations and Directions for Future Research 
 

Although our study is based on strong data, some potential limitations should be 

addressed in the future. First, students were tracked not only in relation to math but also in 

German and English. However, we had no information about German and English class 

membership. Thus, every student was associated with two more class environments that were not 

included in our analysis. Future research should aim at juxtaposing all class environments as 

frames-of-reference for academic self-concept formation. However, such an endeavor requires a 

comprehensive dataset with complete information on students’ multiple course memberships. 

A second potential limitation of the present investigation is that it is based on cross- 

sectional population data, thus we cannot provide firm causal inference. For two reasons, we 
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argue that our correlational approach, which is of course not perfect, still provides a rather strong 

design to investigate the desired research questions. First, an internally valid juxtaposition of 

multiple class environments as frames-of-reference for academic self-concept formation would 

require the random assignment to multiple class environments that differ in their average 

achievement. More specifically, it would require randomizing students to schools with different 

achievement levels, while simultaneously keeping class achievement constant. Likewise, it would 

require randomizing students to classes with different achievement levels, while simultaneously 

keeping school achievement constant. For ethical, organizational, and political reasons there is no 

chance to conduct such a study. Second, our study shows that achievement aggregates from 

different student environments are highly correlated and that controlling for all student 

environments results in a completely different picture. For instance, the school BFLPE shrinks by 

about 85% (from -.42 to -.06). Thus, we argue that our study which controls for achievement 

aggregates of different student environments has substantially improved in internal validity in 

contrast to previous studies that considered only one student environment (e.g., the school). 

Third—although data from the Austrian national educational standard assessment 

represents a comprehensive survey, thus providing nearly perfect external validity for the 

Austrian context—it remains unclear to what extent our results are generalizable to other 

countries and educational systems. Due to differences in teacher communication or grading 

policies, it might be the case that pivotal frames-of-reference for academic self-concept formation 

in other student populations deviate from those we found. Thus, future studies should replicate 

our findings in different cultural contexts. Additionally, prior research has produced evidence that 

the BFLPE is stronger in math as opposed to verbal domains (e.g., Guo et al., 2018). In this 

paper, we focused on mathematics, as this was the central domain of the national educational 

standard assessments in 2012. Future research is needed to test the generalizability of our results 
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to other domains (e.g., language). Limitations of external validity also concern the transferability 

of the results to other age groups. For instance, the local dominance effect might be stronger in 

younger age groups that evaluate their abilities primarily concerning very proximal 

environments, whereas older age groups might take into account also less proximal comparison 

information. Limitations of external validity also concern the transferability of the results to other 

educational systems. 

Finally, track level, as well as grades, were self-reported by students. Thus self-report 

bias, such as social desirability, might have impacted the reliability and validity of our measures. 

As it is rather unlikely that self-report bias differentially occurred for different groups of students, 

we think that it did not affect the relationship between the variables. If this would have been the 

case, however, the grade- and track-level estimates that we found would have been conservative 

estimates. Concerning grades, there is also empirical evidence that self-reported measures 

provide reliable indicators of actual grades (Sticca et al., 2017). Additionally, neither grades nor 

track level were the central constructs in Hypothesis 3 and Hypothesis 4. 

Practical Implications 
 

Generally, the very basic BFLPE finding—equally able students have lower self-concept 

in high achieving educational environments—has a variety of practical implications. These 

implications can be divided into (a) implications for individual educational careers and (b) 

implications for educational systems. Regarding (a), the BFLPE predicts that individual 

educational careers that will result in changes in the average achievement of a student’s 

educational environment will be accompanied by changes in the student’s academic self-concept. 

In this context, the BFLPE predicts that school transfers, educational transitions, course choices, 

track changes, or grade retention of a student may be accompanied by changes in his academic 

self-concept (e.g., Wouters et al., 2012). Regarding (b), the BFLPE predicts that changing 
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educational systems concerning the composition of educational environments will result in 

changes in students’ academic self-concept. Specifically, this means that every form of ability 

segregation (e.g., different forms of tracking) should increase the academic self-concept of low 

achievers because it decreases the average achievement of these students’ educational 

environments (Hübner et al., 2017; Hübner et al., 2020). Vice versa, the BFLPE predicts that 

ability desegregation (e.g., detracking) will decrease the academic self-concept of low achievers 

because it increases the average achievement of these students’ educational environments. 

Given these predictions of the BFLPE, the question arises on how educational 

policymakers should shape their school systems to reduce the negative consequences of the 

frame-of-reference effect. First of all, it has to be noted that the BFLPE is a “zero-sum game” 

(Trautwein & Möller, 2016). This means that a low achieving student that encounters a high 

achieving classroom will have lower academic self-concept but he will also lower the class 

average achievement of that class, increasing the academic self-concept of other students. 

Similarly, detracking will result in an academic self-concept decline of low achievers but an 

academic self-concept increase of high achievers. Additionally, the BFLPE applies to student 

motivation in terms of academic self-concept, but there is still an ongoing discussion of how 

selective student environments affect students’ academic achievement (Dicke et al., 2018; Stäbler 

et al., 2017). Some studies suggest that selective learning environments positively impact 

students’ academic achievement via peer spillover effects (Ammermueller & Pischke, 2009; 

Burke & Sass, 2013). However, also opposite effects have been found (e.g., Dicke et al., 2018; 

Televantou et al., 2015). Nevertheless, suggestions have been made for counteracting the 

negative consequences of the BFLPE. For instance, Marsh and Seaton (2015) suggest avoiding a 

competitive environment, enhancing students’ feeling of connection, or valuing students’ unique 

accomplishments as potential measures to reduce the negative consequences of BFLPE. 
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Unfortunately, there is almost no evidence for the effectiveness of such endeavors. For instance, 

several studies show that the size of the BFLPE seems not to be affected by feedback practices 

(Lüdtke et al., 2005) or motivational climate (Wouters et al., 2013). Thus, the BFLPE has 

repeatedly been described as an unavoidable aspect of human nature (Marsh et al., 2020). Against 

this background, we were able to identify only one study that found differentiated instruction to 

weaken the BFLPE (Roy et al., 2015). However, in sum, studies consider the BFLPE an 

unavoidable aspect of human nature (Marsh et al., 2020). Our study investigated BFLPE and 

its proposed mechanisms within course-by-course tracked school systems in which students are 

members of multiple class environments. Accordingly, our findings allow for a refinement of 

BFLPE predictions presented above. Regarding individual educational careers, our study results 

suggest that a student’s academic self-concept in a certain domain may be strongly hurt when 

placing him in high achieving domain-specific classes and may also be hurt, though to a much 

lesser extent, when placing him in high achieving domain-unrelated classrooms or schools. 

Our study also comes with further implications for educational practice. For example, we 

found track-level effects to be more pronounced in math classes that contain students from more 

than one math track. As track-level effects on academic self-concept negatively affect low 

achievers and have the opposite effect for high achievers, these results remind practitioners to 

carefully think about the arrangement of learning environments. We also found frame-of- 

reference effects on grades on the math class level and to a weaker extent on the school level. 

This finding can be interpreted to mean that grades might not only be class-referenced but also be 

school-referenced. Thus, making grades a more valid instrument for student assessment requires 

better coordination not only between teachers but also between respective schools. 

Although there is compelling evidence that, in general, a high self-concept is beneficial 

for students, whereas a low self-concept is rather harmful (e.g., Marsh et al., 2016), it is important 
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to mention that a low but realistic self-concept may have advantages over a high but unrealistic 

self-concept. For example, compared to an unrealistically high self-concept, a low but realistic 

self-concept may positively impact academic decision making, such as choosing a more suitable 

program of study, and decrease dropout. More research is needed on the importance of academic 

self-concept for students’ academic careers. 

Conclusion 
 

The present study was aimed at testing predictions from local dominance theory by taking 

a closer look at the pivotal frames-of-reference for academic self-concept formation in course-by- 

course tracked school systems. More specifically, we were interested in juxtaposing multiple 

class environments as frames-of-reference for academic self-concept formation. Data from a 

comprehensive survey that measured the entire population of Austrian eighth-grade students 

without special educational needs were well-suited for addressing our research question as 

general secondary school students were tracked in the core subjects (i.e., mathematics, German, 

and English) according to ability, whereas regular class composition was the same in all other 

(non-tracked) subjects. We found math class achievement and to a weaker extent regular class 

achievement to negatively affect math self-concept, when controlling for achievement on all 

levels of student nesting. Our finding is in line with local dominance theory and suggests the 

more proximal domain-specific and to a lower extent the domain-unrelated environments to be 

frames-of-reference for academic self-concept formation. 
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Figure 1. Graphical illustration of the cross-classified data structure (exemplary for two schools). 
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Figure 2. Graphical illustration of statistical models testing 
the study hypotheses. All variables refer to the domain of 
mathematics. +/++/+++ represent expected positive effects 
in different strengths, -/--/--- represent expected negative 
effects in different strengths. 
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Table 1 
 

Descriptive Statistics of Model Variables 
 Mis M SD VPind VPmcl VPrcl VPsch 1 2 3 4 5 
1. Self-concept .01 2.97 0.76 .77 .18 .00 .05      
2. Individual achievement .00 504.24 86.85 .38 .43 .06 .14 .39     
3. Math class achievement .00 504.24 67.58     .16 .78    
4. Regular class achievement .00 504.24 49.74     .09 .57 .70   
5. School achievement .00 504.24 44.09     .06 .51 .65 .89  
6. Grade .02 3.19 0.94 .63 .19 .07 .10 .51 .39 .20 .15 .12 

Note. All variables refer to the domain of mathematics. Variables 1 to 5 are in their original metric. Grade is reverse coded in that higher 
values indicate better grades. Descriptive statistics were calculated using a complete case analysis approach. Variance proportions were 
estimated using random intercept models that modeled all levels of student nesting: students (VPind), math class (VPmcl), regular class 
(VPrcl), and school (VPsch). Mis = percent missing. 
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Table 2 
 

Pivotal Frames-of-Reference for Academic Self-Concept Formation 
 

Model 0  Model 1   Model 2   Model 3   Model 4  
B B SE CI p B SE CI p B SE CI p B SE CI p 

 

Fixed Effects 
Individual achievement .55 .01  [.54, .56]  <.001 .67 .01  [.66, .68]  <.001 .56 .01  [.55, .57]  <.001 .67 .01 [.66, .69]  <.001 
School achievement -.42 .01 [-.45, -.39] <.001 -.06 .02 [-.10, -.02] .004 
Math class achievement -.43 .01 [-.45, -.41] <.001 -.37 .01 [-.39, -.35] <.001 
Regular class achievement -.37 .01 [-.39, -.35] <.001  -.11 .02 [-.15, -.08] <.001 

Random Effect Variances 
Individual .97 .87 .87 .87 .87 
Math class .22 .24 .15 .23 .15 
Regular class .00 .08 .08 .06 .08 
School .07 .03 .12 .06 .10 

Variance Proportions 
Individual 

 
.77 

 
.71 

 
.71 

 
.71 

 
.72 

Math class .18 .20 .12 .19 .13 
Regular class .00 .06 .07 .05 .06 
School .05 .02 .10 .05 .09 

Note. N = 49,625. All variables refer to the domain of mathematics. Level 1 variables are standardized, and manifest level 2 aggregates 
are composed of standardized level 1 variables. CI = 95% confidence interval. 
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Table 3 
 

Pivotal Frames-of-Reference for Academic Self-Concept Formation With Math Grade and Track Level 
  Model 5 (N = 46,078)    Model 6 (N = 48,978)  

B SE CI p B SE CI p 
 

Fixed Effects 
Individual achievement 

School achievement 

Math class achievement 

Regular class achievement 

Low track 

 
 
 
 
 
 
-.09 .02 
 
-.32 .01 

 
 
 
 
 
[-.13 

, -.06] <.001  -.14 .02 
[-.35 

, -.30] <.001 

 
 
 
 
 
[-.18 

, -.11] <.001 

High track .19 .01 [.17, .22]  <.001 
Grade .39 .00 [.38, .40 <.001 

Random Effect Variances 
Individual .86 .80 
Math class .15 .13 
Regular class .08 .07 
School .10 .10 

Variance Proportions 
Individual 

 
.72 

 
.73 

Math class .13 .12 
Regular class .07 .07 
School .08 .09 

Note. All variables refer to the domain of mathematics. Level 1 variables are standardized, and manifest level 2 aggregates are composed 
of standardized level 1 variables. The track variables are dummy variables with reference category medium track. Because of the 
complete case analysis approach, Ns differed slightly for the statistical models. CI = 95% confidence interval. 

.61 .01 [.60, .63] <.001 .45 .01 [.44, .46] <.001 
     [-.06  
.05 .02 [.01, .09] .024 -.02 .02 , .02] .297 

  [-.56   [-.28  
-.53 .01 , -.51] <.001 -.26 .01 , -.24] <.001 
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Table 4 
 

Pivotal Frames-of-Reference for Academic Self-Concept Formation: Differences Between Students from Pure and Mixed Math Classes 
B SE CI p 

 

Fixed Effects 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mixed x low track 

Mixed x high track 

Random Effects Variances 
Individual .86 
Math class .15 
Regular class .08 
School .10 

Variance Proportions 
Individual .72 
Math class .13 
Regular class .07 

Mixed -.04 .02 [-.08, .00] .082 

Achievement  
.69 

 
.01 [.67, .71] 

<.00 
1 

School achievement .00 .04 [-.07, .08] .941 

Math class achievement  
-.52 

 
.03 [-.58, -.45] 

<.00 
1 

Regular class achievement -.08 .03 [-.13, -.02] .006 

Low track  
-.19 

 
.03 [-.26, -.13] 

<.00 
1 

High track .09 .04 [.02, .16] .009 

Mixed x achievement  
-.14 

 
.01 [-.17, -.11] 

<.00 
1 

Mixed x school achievement .06 .05 [-.03, .16] .199 
Mixed x math class achievement .03 .04 [-.05, .10] .499 
Mixed x regular class a  chievement -.05 .04 [-.12, .03] .220 

  <.00 
-.19 .04 [-.26, -.11] 1 

  <.00 
.14 .04 [.06, .22] 1 
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School .08 
Note. All variables refer to the domain of mathematics. Level 1 variables are standardized, and manifest level 2 aggregates are composed 
of standardized level 1 variables. “Mixed” is a dummy variable indicating if students belong to pure (students from one math track; value 
0) or mixed (students from several math tracks; value 1) math classes. The track-level variables are dummy variables with reference 
category medium track. CI = 95% confidence interval. 
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Table 5 
 

Pivotal Frames-of-Reference for Grade Provision 
 

 Model 1   Model 2   Model 3   Model 4  
B SE CI p B SE CI p B SE CI p B SE CI p 

Fixed Effects 

Individual achievement 
 

School achievement 

 
 

.49 .01  [.48, .51] 

 
 

.57 .01  [.56, .59] 

 
<.00 

1 
<.00 

 
Math class achievement 

-.25 .02 [-.28, -.22] <.001 -.10 .03 [-.15, -.06] 
 

-.30 .01 [-.32, -.28] <.001 -.30 .01 [-.32, -.28] 

1 
<.00 

1 
Regular class achievement -.15 .01 [-.18, -.13] <.001 .07 .02  [.03, .11] .001 

Random Effects Variances 
Individual .86 .86 .86 .86 
Math class .27 .23 .27 .23 
Regular class .08 .10 .10 .10 
School .15 .17 .15 .17 

Variance Proportions 
Individual 

 
.63 

 
.64 

 
.63 

 
.64 

Math class .20 .17 .19 .17 
Regular class .06 .08 .07 .07 
School .11 .12 .11 .12 

Note. All variables refer to the domain of mathematics. Level 1 variables are standardized, and manifest level 2 aggregates are composed 
of standardized level 1 variables. CI = 95% confidence interval. 

<.001 .57 .01 [.56, .59] <.001 .49 .01 [.48, .50] <.001 
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Supplemental material 
 

Table S1 
 

Descriptive Statistics for Different Math Tracks 
 

 Low track   Medium track   High track  
M SD 1 2 M SD 1 2 M SD 1 2 

1. Self-concept 2.55 0.79   2.91 0.73   3.16 0.70   
2. Achievement 414.02 56.06 .25  477.38 59.10 .24  564.77 69.50 .32  
3. Grade 2.69 0.88 .41 .19 3.06 0.81 .41 .17 3.46 0.96 .51 .32 
Note. All variables refer to the domain of math. Variables 1 to 2 are in their original metric. Grade is reverse coded in that higher values 
indicate better grades. Descriptive statistics were calculated using a complete case analysis approach.. 
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Table S2 
 

Pivotal Frames-of-Reference for Academic Self-Concept Formation Without Self-Concept Item That Refers to Social Comparison 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6  

B SE CI p B SE CI p B SE CI p B SE CI p B SE CI p B SE CI p 
Individual achievement .53  .01  [.52, .54] <.001 .64  .01  [.63, .66] <.001 .54  .01  [.53, .55] <.001  .65  .01  [.63, .66] <.001 .59  .01 [.57 .60] <.001 .43  .01 [.41, .44] <.001 
School achievement -.41  .01 [-.43, -.38]  <.001   -.08  .02  [-.13, -.04]  <.001 .03  .02  [-.01 .08] .162 -.04  .02 [-.08, .00] .042 
Math class achievement  -.41  .01 [-.43, -.39]  <.001  -.35  .01  [-.37, -.33]  <.001 -.52  .01  [-.54 -.49]  <.001 -.24  .01 [-.26, -.22] <.001 
Regular class achievement   -.35  .01 [-.38, -.33] <.001 -.10  .02 [-.13, -.06]  <.001 -.07  .02  [-.11 -.04]  <.001 -.13  .02 [-.16, -.09] <.001 
Low track     -.31  .01  [-.33 -.28]  <.001   

High track     .21  .01 [.18 .24] <.001   

Grade      .39  .00 [.38, .40] <.001 
Note. The self-concept item that refers to social comparison is Mathematics is harder for me than for many of my classmates. All variables refer to the domain of math. Level 1 variables are standardized, and 
manifest level 2 aggregates are composed of standardized level 1 variables. The track variables are dummy variables with reference category medium track. CI = 95% confidence interval. 
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Table S3 
 

Pivotal Frames-of-Reference for Academic Self-Concept Formation Controlling for Covariates 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6  
 B SE CI p B SE CI p B SE CI p B SE CI p B SE CI p B SE CI p 
Sex -.35  .01 [-.36, -.33]  <.001 -.33  .01 [-.35, -.32]  <.001 -.35  .01 [-.36, -.33] <.001 -.33  .01 [-.35, -.32]  <.001 -.34  .01 [-.36, -.32]  <.001 -.41  .01 [-.42, -.39] <.001 
Age .00  .00 [-.01, .01] .552 -.01  .00 [-.02, .00] .008 .00  .00 [-.01, .00] .353 -.01  .00  [-.02, .00] .006 .00  .00 [-.01, .01] .617 .01  .00 [.00, .01] .133 
SES -.01  .00 [-.02, .00] .045 .00  .00 [-.01, .01] .605 -.01  .00 [-.01, .00] .188  .00  .00 [-.01, .01] .837 -.01  .00 [-.02, .00] .045 -.01  .00 [-.02, -.01] <.001 
Migration .20  .01  [.17, .22] <.001 .21  .01  [.18, .23] <.001 .20  .01  [.18, .23] <.001  .19  .01  [.16, .21] <.001 .20  .01  [.18, .23] <.001 .15  .01 [.13, .17] <.001 
Individual achievement .54  .01  [.53, .55] <.001 .65  .01  [.64, .67] <.001 .55  .01  [.54, .56] <.001  .65  .01  [.64, .67] <.001 .59  .01  [.58, .61] <.001 .41  .01 [.40, .43] <.001 
School achievement -.34  .01 [-.37, -.31]  <.001   -.04  .02 [-.08, .01] .101 .09  .02  [.05, .14] <.001 .00  .02 [-.04, .04] .990 
Math class achievement  -.39  .01 [-.41, -.37]  <.001  -.35  .01  [-.37, -.33]  <.001 -.52  .01 [-.55, -.49]  <.001 -.21  .01 [-.23, -.19] <.001 
Regular class achievement   -.30  .01 [-.33, -.28] <.001 -.09  .02 [-.13, -.05]  <.001 -.06  .02 [-.10, -.02] .002 -.12  .02 [-.15, -.08] <.001 
Low track     -.34  .01 [-.37, -.31]  <.001   

High track     .22  .01  [.19, .24] <.001   

Grade      .41  .00 [.41, .42] <.001 
Note. All variables refer to the domain of math. Level 1 variables are standardized, and manifest level 2 aggregates are composed of standardized level 1 variables. Sex is a dummy variable with 0 for male 
and 1 for female. Migration is a dummy variable with 0 for no migration background and 1 for migration background. The track variables are dummy variables with reference category medium track. CI = 
95% confidence interval. 
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Table S4 
 

Pivotal Frames-of-Reference for Academic Self-Concept Formation With Math Class Average Track Level 
 B SE CI p 
Individual achievement .67 .01 [.66, .68] <.001 
School achievement .02 .02 [-.02, .07] .375 
Math class achievement -.53 .02 [-.57, -.49] <.001 
Regular class achievement -.09 .02 [-.13, -.06] <.001 
Math class average track level .17 .02 [.13, .21] <.001 
Note. All variables refer to the domain of mathematics. Level 1 variables are standardized, and manifest level 2 aggregates are composed 
of standardized level 1 variables. CI = 95% confidence interval. 
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Table S5 
 

Track Interaction Model 
 

B SE CI p 
 

Achievement  
.55 

 
.01 [.53, .58] 

<.00 
1 

School achievement .08 .03 [.01, .15] .022 

Math class achievement 

Regular class achievement 

Low track 

High track 
 
 
 
 
 

School achievement x High track  
-.20 

 
.05 [-.29, -.11] 

<.00 
1 

Math class achievement x Low track -.06 .04 [-.13, .02] .126 
Math class achievement x High track -.09 .03 [-.15, -.02] .010 
Regular class achievement x Low track .01 .05 [-.09, .11] .885 
Regular class achievement x High track .11 .04 [.02, .19] .010 
Note. All variables refer to the domain of mathematics. Level 1 variables are standardized, and manifest level 2 aggregates are composed 
of standardized level 1 variables. The track variables are dummy variables with reference category medium track. CI = 95% confidence 
interval. 

 .15 .02 [.12, .18] 1 
Achievement x Low track .00 .02 [-.05, .04] .848 

Achievement x High track  
.11 

 
.02 [.08, .15] 

<.00 
1 

School achievement x Low track .17 .05 [.06, .27] .002 
 

 <.00 
-.44 .02 [-.49, -.39] 1 

  <.00 
-.15 .03 [-.21, -.09] 1 

  <.00 
-.34 .03 [-.40, -.29] 1 

  <.00 
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Table S6 
 

Pivotal Frames-of-Reference for Academic Self-Concept Formation with Only the Social Comparison Item as the Outcome 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6  

B SE CI p B SE CI p B SE CI p B SE CI p B SE CI p B SE CI p 
Individual achievement .39  .01  [.38, <.001 .51  .01  [.49, .52] <.001 .41  .01  [.40, .42] <.001  .51  .01  [.50, .53] <.001 .47  .01  [.46, .49] <.001 .36  .01 [.34, .37] <.001 
School achievement -.30  .01 [-.32, -.28]  <.001   .00  .02 [-.04, .04] .983 .07  .02  [.03, .11] .001 .03  .02 -[.01, .07] .105 
Math class achievement  -.35  .01 [-.37, -.33]  <.001  -.30  .01  [-.32, -.28]  <.001 -.40  .01 [-.42, -.37]  <.001 -.22  .01 [.24, -.20] <.001 
Regular class achievement   -.29  .01 [-.31, -.27] <.001 -.12  .02 [-.15, -.08]  <.001 -.11  .02 [-.14, -.07]  <.001 -.14  .02 [-.17, -.11] <.001 
Low track     -.25  .01 [-.28, -.22]  <.001   

High track     .09  .01  [.06, .12] <.001   

Grade      .27  .00 [.26, .28] <.001 
Note. All variables refer to the domain of mathematics. Level 1 variables are standardized, and manifest level 2 aggregates are composed of standardized level 1 variables. The track-level variables are 
dummy variables with reference category medium track. CI = 95% confidence interval. 
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Table S7 
 

Pivotal Frames-of-Reference for Academic Self-Concept Formation with Multiple Imputation 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6  
 B SE CI p B SE CI p B SE CI p B SE CI p B SE CI p B SE CI p 
Individual achievement .55  .01  [.54, <.001 .67  .01  [.65, .68] <.001 .56  .01  [.55, .57] <.001  .67  .01  [.66, .69] <.001 .62  .01  [.61, .64] <.001 .48  .01 [.46, .49] <.001 
School achievement -.42  .01 [-.45, -.40]  <.001   -.06  .02 [-.11, -.02] .004 .01  .02 [-.03, .06] .564 -.03  .02 [-.07, .01] .204 
Math class achievement  -.43  .01 [-.45, -.41]  <.001  -.37  .01  [-.40, -.35]  <.001 -.49  .01 [-.52, -.47]  <.001 -.27  .01 [-.29, -.25] <.001 
Regular class achievement   -.37  .01 [-.40, -.35] <.001 -.12  .02 [-.15, -.08]  <.001 -.09  .02 [-.13, -.05]  <.001 -.14  .02 [-.17, -.11] <.001 
Low track     -.27  .01 [-.29, -.24]  <.001   

High track     .14  .01  [.11, .17] <.001   

Grade      .36  .00 [.36, .37] <.001 
Note. All variables refer to the domain of mathematics. Level 1 variables are standardized, and manifest level 2 aggregates are composed of standardized level 1 variables. The track-level variables are 
dummy variables with reference category medium track. CI = 95% confidence interval. 
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Table S8 
 

Pivotal Frames-of-Reference for Academic Self-Concept Formation with the Pure Student Sample 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6  
 B SE CI p B SE CI p B SE CI p B SE CI p B SE CI p B SE CI p 
Individual achievement .53  .01  [.51, <.001 .68  .01  [.66, .70] <.001 .53  .01  [.52, .55] <.001  .68  .01  [.66, .70] <.001 .69  .01  [.67, .71] <.001 .42  .01 [.40, .44] <.001 
School achievement -.40  .03 [-.45, -.35]  <.001   -.07  .03 [-.14, -.01] .033 .00  .04 [-.08, .08] .968 -.03  .03 [-.09, .03] .362 
Math class achievement  -.43  .01 [-.46, -.40]  <.001  -.39  .02  [-.42, -.36]  <.001 -.51  .03 [-.58, -.44] .000 -.25  .01 [-.28, -.22] <.001 
Regular class achievement   -.30  .02 [-.34, -.27] <.001 -.08  .03 [-.13, -.03] .002 -.08  .03 [-.13, -.03] .004 -.11  .02 [-.16, -.06] <.001 
Low track     -.19  .03 [-.25, -.12]  <.001   

High track     .09  .04  [.01, .16] .019   

Grade      .41  .01 [.39, .42] <.001 
Note. All variables refer to the domain of mathematics. Level 1 variables are standardized, and manifest level 2 aggregates are composed of standardized level 1 variables. The track-level variables are 
dummy variables with reference category medium track. CI = 95% confidence interval. 
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Table S9 
 

Pivotal Frames-of-Reference for Academic Self-Concept Formation with Moderators 
 

 Sex  Age Migration SES 
 B SE CI p B SE CI p B SE CI p B SE CI p 
Moderator -.33 .01 [-.35, -.32] <.001 .01 .00 [.00, .02] .008 .19 .01 [.16, .21] <.001 -.01 .00 [-.02, .00] .094 
Achievement .65 .01 [.63, .66] <.001 .67 .01 [.66, .69] <.001 .68 .01 [.67, .69] <.001 .68 .01 [.66, .69] <.001 
School achievement -.06 .03 [-.11, -.01] .031 -.07 .02 [-.11, -.02] .002 -.02 .02 [-.07, .03] .426 -.07 .02 [-.11, -.02] .003 
Math class achievement -.34 .01 [-.37, -.32] <.001 -.37 .01 [-.39, -.35] <.001 -.37 .01 [-.39, -.34] <.001 -.38 .01 [-.40, -.35] <.001 
Regular class achievement -.12 .02 [-.17, -.08] <.001 -.11 .02 [-.15, -.08] <.001 -.11 .02 [-.15, -.07] <.001 -.11 .02 [-.14, -.07] <.001 
Moderator x school achievement -.02 .04 [-.09, .05] .529 .03 .02 [-.01, .06] .142 -.02 .05 [-.12, .07] .612 -.01 .02 [-.05, .02] .507 
Moderator x math class achievement -.01 .01 [-.04, .02] .475 -.01 .01 [-.02, .01] .272 .00 .02 [-.05, .04] .905 .01 .01 [.00, .03] .070 
Moderator x regular class achievement .04 .03 [-.03, .11] .249 .00 .02 [-.03, .03] .900 .01 .05 [-.08, .10] .871 .02 .02 [-.02, .05] .312 
Note. All variables refer to the domain of mathematics. Level 1 variables are standardized, and manifest level 2 aggregates are composed 
of standardized level 1 variables. Sex is a dummy variable with 0 for male and 1 for female. Migration is a dummy variable with 0 for no 
migration background and 1 for migration background. The column names indicate the moderator under investigation. CI = 95% 
confidence interval. 
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Table S10 
 

Correlations Using a Within-Cluster Centering (CWC) Approach 
 

 1 2  
Individual level 

1. Self-concept 
2. Achievement .38  
3. Grade .50 .37 

Math class level 
1. Self-concept 

  

2. Achievement .58  
3. Grade .60 .53 

Regular class level   
1. Self-concept   
2. Achievement .35  
3. Grade .49 .48 

School level   
1. Self-concept   
2. Achievement .30  

 3. Grade .49 .41 
Note. Individual-level variables are centered at the two classenvironments, and class-level variables are centered at the school 
environment. 
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Table S11 
 

Pivotal Frames-of-Reference for Academic Self-Concept Formation using a Within Custer Centering (CWC) Approach 
 

 Model 1   Model 2   Model 3   Model 4  
B SE CI p B SE CI p B SE CI p B SE CI p 

Fixed Effects 

Individual achievement 

 
 

.63 .01 [.62, .64]  <.001 .59 .01 [.58, .61] 

 
<.00 

1 .62 .01 [.61, .63]  <.001 .67 .01 [.66, .69]  <.001 
School achievement .74 .02 [.71, .77]  <.001 .79 .01 [.77, .82]  <.001 

<.00 
Math class achievement .35 .01 [.33, .37] 1 .30 .01 [.28, .32]  <.001 
Regular class achievement .66 .02 [.62, .70]  <.001 .56 .02 [.52, .59]  <.001 

Variance Proportions 
Individual .87 .87 .87 .87 
Math class .28 .17 .26 .15 
Regular class .18 .17 .05 .08 
School .00 .36 .37 .10 

Random Effect Variances 
Individual .65 .55 .56 .72 
Math class .21 .11 .17 .13 
Regular class .13 .11 .03 .06 
School .00 .23 .24 .09 

Contextual Effects Estimates 
School BFLPE -.06 
Math class BFLPE -.37 
Regular class BFLPE -.11 

 

Note. Individual-level variables are centered at the two class environments, and class-level variables are centered at the school 
environment. 
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Table S12 
 

Descriptive Statistics in the Total Sample 
 

Mis M SD VPind  VPcl VPsch 1 2 3 4 
1. Self-concept .01 2.97 0.76 .78 .16 .06     
2. Individual achievement .00 535.36 94.31 .37 .33 .30 .38    
3. Class achievement .00 535.36 74.33    .12 .79   
4. School achievement .00 535.36 60.52    .05 .64 .81  
5. Grade .02 3.16 1.01 .69 .19 .12 .54 .36 .11 .04 

Note. All variables refer to the domain of mathematics. Variables 1 to 5 are in their original metric. Grade is reverse coded in that higher 
values indicate better grades. Descriptive statistics were calculated using a complete case analysis approach. Variance proportions were 
estimated using random intercept models that modeled all levels of student nesting: students (VPind), class (VPcl), and school (VPsch). 
Mis = percent missing. 
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Table S13 
 

Pivotal Frames-of-Reference for Academic Self-Concept Formation in the Total Sample 
 

 Model 1   Model 2   Model 3  
B SE CI p B SE CI p B SE CI p 

Individual achievement 

School achievement 

Class achievement 

Random Effect Variances 

 
.67 .00  [.66, .68]  <.001 .76 .01  [.75, .77]  <.001 .76 .00  [.75, .77] 

 
-.58 .01 [-.60, -.57] <.001 -.22 .01 [-.24, -.19] 

 
-.56 .01 [-.57, -.54] <.001  -.45 .01 [-.47, -.43] 

<.00 
1 

<.00 
1 

<.00 
1 

Individual .85 .85 .16 
Class .25 .17 .11 
School .05 .13 .85 

Variance Proportions 
Individual .74 .74 .15 
Class .22 .15 .09 
School .04 .11 .76 

Note. All variables refer to the domain of mathematics. Level 1 variables are standardized, and manifest level 2 aggregates are composed 
of standardized level 1 variables. CI = 95% confidence interval. 
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Table S14 
 

Descriptive Statistics in the Academic Secondary School Subsample 
 

Mis M SD VPind  VPcl VPsch 1 2 3 4 
1. Self-concept .01 2.99 0.77 .83 .13 .04     
2. Individual achievement .00 599.86 74.66 .55 .19 .26 .51    
3. Class achievement .00 599.86 39.17    .08 .52   
4. School achievement .00 599.86 31.38    .04 .42 .80  
5. Grade .02 3.12 1.14 .73 .17 .10 .61 .51 .07 .04 

Note. All variables refer to the domain of mathematics. Variables 1 to 5 are in their original metric. Grade is reverse coded in that higher 
values indicate better grades. Descriptive statistics were calculated using a complete case analysis approach. Variance proportions were 
estimated using random intercept models that modeled all levels of student nesting: students (VPind), class (VPcl), and school (VPsch). 
Mis = percent missing. 
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Table S15 
 

Pivotal Frames-of-Reference for the Academic Secondary School Subsample 
 

 Model 1   Model 2   Model 3  
B SE CI p B SE CI p B SE CI p 

Fixed Effects 

Individual achievement 

School achievement 

Class achievement 

Random Effect Variances 

 
 

.62 .01 [.61, .63]  <.001 .64 .01 [.63, .65]  <.001 .64 .01 [.63, .65] 
 

-.53 .02 [-.57 -.49] <.001 -.18 .03 [-.24, -.13] 
 

-.48 .02 [-.51, -.45] <.001  -.37 .02 [-.42, -.32] 

 
<.00 

1 
<.00 

1 
<.00 

1 

Individual .81 .81 .81 
Class .21 .18 .17 
School .00 .05 .05 

Variance Proportions 
Individual .21 .17 .17 
Class .21 .17 .17 
School .00 .05 .05 

Note. All variables refer to the domain of mathematics. Level 1 variables are standardized, and manifest level 2 aggregates are composed 
of standardized level 1 variables. CI = 95% confidence interval. 
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Table S16 
 

Pivotal Frames-of-Reference for Academic Self-Concept Formation With IRT-Scaled WLE Scores as Outcome 
 

 Model 1   Model 2   Model 3   Model 4  
B SE CI p B SE CI p B SE CI p B SE CI p 

 

Fixed Effects 

Individual achievement  
.54 .01 

 
[.53 .55] 

 
<.001 

 
.66 .01 

 
[.64 .67] 

<.00 
1 

 
.55 

 
.01 

 
[.54 .56] 

 
<.001 

 
.66 

 
.01 

 
[.65 

 
.67] <.001 

School achievement -.42 .01 [-.45 -.40] <.001        -.10 .02 [-.14 -.05] <.001 

Math class achievement  
-.42 .01 

 
[-.44 -.40] 

<.00 
1 

     
-.36 

 
.01 

 
[-.38 

 
-.34] <.001 

Regular class achievement    -.36 .01 [-.39 -.34] <.001 -.09 .02 [-.13 -.06] <.001 
Random Effect Variances 

Individual .88 .87 .88 .87 
Math class .24 .15 .22 .15 
Regular class .08 .08 .07 .08 
School .05 .13 .08 .11 

Variance Proportions 
Individual 

 
.71 

 
.71 

 
.70 

 
.72 

Math class .19 .12 .18 .12 
Regular class .06 .07 .06 .07 
School .04 .10 .06 .09 

Note. All variables refer to the domain of mathematics. Level 1 variables are standardized, and manifest level 2 aggregates are composed 
of standardized level 1 variables. CI = 95% confidence interval. 
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Table S17 
 

Pivotal Frames-of-Reference for Academic Self-Concept Formation With Math Grade and Track Level With IRT-Scaled WLE Scores as 
Outcome 

 

 Model 5   Model 6  
B SE CI p B SE CI p 

 

Fixed Effects 
Individual achievement .60 .01  [.59, .61] <.001 .44 .01  [.42, .45] <.001 
School achievement .02 .02 [-.03, .06] .411 -.05 .02 [-.09, -.01] .007 
Math class achievement -.52 .01 [-.55, -.50] <.001 -.24 .01 [-.26, -.22] <.001 
Regular class achievement -.07 .02 [-.11, -.03] <.001  -.12 .02 [-.16, -.09] <.001 
Low track -.28 .01 [-.31, -.26] <.001 
High track .22 .01  [.19, .25]  <.001 
Grade .39 .00  [.38, .40]  <.001 

Random Effect Variances 
Individual .86 .80 
Math class .15 .13 
Regular class .08 .07 
School .11 .11 

Variance Proportions 
Individual 

 
.72 

 
.72 

Math class .13 .11 
Regular class .07 .07 
School .09 .09 

Note. All variables refer to the domain of mathematics. Level 1 variables are standardized, and manifest level 2 aggregates are composed 
of standardized level 1 variables. The track variables are dummy variables with reference category medium track. CI = 95% confidence 
interval. 


