A novel joint sparse partial correlation method for estimating group functional networks

Journal article


Liang, Xiaoyun, Connelly, Allan and Calamante, Fernando. (2016) A novel joint sparse partial correlation method for estimating group functional networks. Human Brain Mapping. 37(3), pp. 1162 - 1177. https://doi.org/10.1002/hbm.23092
AuthorsLiang, Xiaoyun, Connelly, Allan and Calamante, Fernando
Abstract

Advances in graph theory have provided a powerful tool to characterize brain networks. In particular, functional networks at group‐level have great appeal to gain further insight into complex brain function, and to assess changes across disease conditions. These group networks, however, often have two main limitations. First, they are popularly estimated by directly averaging individual networks that are compromised by confounding variations. Secondly, functional networks have been estimated mainly through Pearson cross‐correlation, without taking into account the influence of other regions. In this study, we propose a sparse group partial correlation method for robust estimation of functional networks based on a joint graphical models approach. To circumvent the issue of choosing the optimal regularization parameters, a stability selection method is employed to extract networks. The proposed method is, therefore, denoted as JGMSS. By applying JGMSS across simulated datasets, the resulting networks show consistently higher accuracy and sensitivity than those estimated using an alternative approach (the elastic‐net regularization with stability selection, ENSS). The robustness of the JGMSS is evidenced by the independence of the estimated networks to choices of the initial set of regularization parameters. The performance of JGMSS in estimating group networks is further demonstrated with in vivo fMRI data (ASL and BOLD), which show that JGMSS can more robustly estimate brain hub regions at group‐level and can better control intersubject variability than it is achieved using ENSS

Keywordsfunctional connectivity; sparse partial correlation; connectome; graphical models; arterial spin labeling
Year2016
JournalHuman Brain Mapping
Journal citation37 (3), pp. 1162 - 1177
PublisherWiley Periodicals
ISSN1065-9471
Digital Object Identifier (DOI)https://doi.org/10.1002/hbm.23092
Scopus EID2-s2.0-84958280321
Page range1162 - 1177
Research GroupMary MacKillop Institute for Health Research
Place of publicationUnited States of America
Permalink -

https://acuresearchbank.acu.edu.au/item/85q7w/a-novel-joint-sparse-partial-correlation-method-for-estimating-group-functional-networks

Restricted files

Publisher's version

  • 0
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Increased cerebral blood flow with increased amyloid burden in the preclinical phase of alzheimer's disease
Fazlollahi, Amir, Calamante, Fernando, Liang, Xiaoyun, Bourgeat, Pierrick, Raniga, Parnesh, Dore, Vincent, Fripp, Jurgen, Ames, David, Masters, Colin L., Rowe, Christopher C., Connelly, Alan, Villemagne, Victor L. and Salvado, Oliver. (2020) Increased cerebral blood flow with increased amyloid burden in the preclinical phase of alzheimer's disease. Journal of Magnetic Resonance Imaging. 51(2), pp. 505 - 513. https://doi.org/10.1002/jmri.26810
A novel method for extracting hierarchical functional subnetworks based on a multisubject spectral clustering approach
Liang, Xiaoyun, Yeh, Chun-Hung, Connelly, Alan and Calamante, Fernando. (2019) A novel method for extracting hierarchical functional subnetworks based on a multisubject spectral clustering approach. Brain Connectivity. 9(5), pp. 399 - 414. https://doi.org/10.1089/brain.2019.0668
T2 mapping of cartilage and menisci at 3T in healthy subjects with knee malalignment: Initial experience
Zhu, Jiangtao, Hu, Ningfan, Liang, Xiaoyun, Li, Xiaojing, Guan, Jian, Wang, Yajuan and Wang, Ligong. (2019) T2 mapping of cartilage and menisci at 3T in healthy subjects with knee malalignment: Initial experience. Skeletal Radiology. 48(5), pp. 753 - 763. https://doi.org/10.1007/s00256-019-3164-0
Robust identification of rich-club organization in weighted and dense structural connectomes
Liang, Xiaoyun, Yeh, Chun-Hung, Connelly, Alan and Calamante, Fernando. (2019) Robust identification of rich-club organization in weighted and dense structural connectomes. Brain Topography. 32, pp. 1 - 16. https://doi.org/10.1007/s10548-018-0661-8
A novel method for extracting hierarchical functional subnetworks based on a multisubject spectral clustering approach
Liang, Xiaoyun, Yeh, Chun-Hung, Connelly, Alan and Calamante, Fernando. (2019) A novel method for extracting hierarchical functional subnetworks based on a multisubject spectral clustering approach. Brain Connectivity. 9(5), pp. 399 - 414. https://doi.org/10.1089/brain.2019.0668
A novel group-fused sparse partial correlation method for simultaneous estimation of functional networks in group comparison studies
Liang, Xiaoyun, Vaughan, David N., Connelly, Alan and Calamante, Fernando. (2018) A novel group-fused sparse partial correlation method for simultaneous estimation of functional networks in group comparison studies. Brain Topography. 31(3), pp. 364 - 379. https://doi.org/10.1007/s10548-017-0615-6
Track-weighted dynamic functional connectivity (TW-dFC): A new method to study time-resolved functional connectivity
Calamante, Fernando, Smith, Robert E., Liang, Xiaoyun, Zalesky, Andrew and Connelly, Alan. (2017) Track-weighted dynamic functional connectivity (TW-dFC): A new method to study time-resolved functional connectivity. Brain Structure and Function. 222(8), pp. 3761 - 3774. https://doi.org/10.1007/s00429-017-1431-1
Correction for diffusion MRI fibre tracking biases: The consequences for structural connectomic metrics
Yeh, Chun-Hung, Smith, Robert E., Liang, Xiaoyun, Calamante, Fernando and Connelly, Alan. (2016) Correction for diffusion MRI fibre tracking biases: The consequences for structural connectomic metrics. NeuroImage. 142, pp. 150 - 162. https://doi.org/10.1016/j.neuroimage.2016.05.047
Reproducibility of multiphase pseudo-continuous arterial spin labeling and the effect of post-processing analysis methods
Fazlollahi, Amir, Bourgeat, Pierrick, Liang, Xiaoyun, Meriaudeau, Fabrice, Connelly, Alan, Salvado, Olivier and Calamante, Fernando. (2015) Reproducibility of multiphase pseudo-continuous arterial spin labeling and the effect of post-processing analysis methods. NeuroImage. 117, pp. 191 - 201. https://doi.org/10.1016/j.neuroimage.2015.05.048
Voxel-wise functional connectomics using arterial spin labeling functional magnetic resonance imaging: The role of denoising
Liang, Xiaoyun, Connelly, Alan and Calamante, Fernando. (2015) Voxel-wise functional connectomics using arterial spin labeling functional magnetic resonance imaging: The role of denoising. Brain Connectivity. 5(9), pp. 543 - 553. https://doi.org/10.1089/brain.2014.0290
A variable flip angle-based method for reducing blurring in 3D GRASE ASL
Liang, Xiaoyun, Connelly, Alan, Tournier, Jacques-Donald and Calamante, Fernando. (2014) A variable flip angle-based method for reducing blurring in 3D GRASE ASL. Physics in Medicine and Biology. 59(18), pp. 5559 - 5573. https://doi.org/10.1088/0031-9155/59/18/5559
Graph analysis of resting-state ASL perfusion MRI data: Nonlinear correlations among CBF and network metrics
Liang, Xiaoyun, Connelly, Alan and Calamante, Fernando. (2014) Graph analysis of resting-state ASL perfusion MRI data: Nonlinear correlations among CBF and network metrics. NeuroImage. 87, pp. 265 - 275. https://doi.org/10.1016/j.neuroimage.2013.11.013
A meta-analysis of randomized control trials of home-based secondary prevention programs for coronary artery disease
Clark, Alexander, Haykowsky, M, Kryworuchko, J, MacClure, T, Scott, Jess, DesMeules, M, Luo, W, Liang, Y and McAlister, F. (2010) A meta-analysis of randomized control trials of home-based secondary prevention programs for coronary artery disease. European Journal of Cardiovascular Prevention & Rehabilitation. 17(3), pp. 261 - 270. https://doi.org/10.1097/HJR.0b013e32833090ef
Effectiveness of cutaneous warming systems on temperature control : Meta-analysis
Galvuo, C, Liang, Y and Clark, Alexander. (2010) Effectiveness of cutaneous warming systems on temperature control : Meta-analysis. Journal of Advanced Nursing. 66(6), pp. 1196 - 1206. https://doi.org/10.1111/j.1365-2648.2010.05312.x