Challenges in administrative data linkage for research
Journal article
Harron, Katie, Dibben, Chris, Boyd, James, Hjern, Anders, Azimaee, Mahmoud, Barreto, Mauricio L. and Goldstein, Harvey. (2017). Challenges in administrative data linkage for research. Big Data and Society. 4(2), pp. 1 - 12. https://doi.org/10.1177/2053951717745678
Authors | Harron, Katie, Dibben, Chris, Boyd, James, Hjern, Anders, Azimaee, Mahmoud, Barreto, Mauricio L. and Goldstein, Harvey |
---|---|
Abstract | Linkage of population-based administrative data is a valuable tool for combining detailed individual-level information from different sources for research. While not a substitute for classical studies based on primary data collection, analyses of linked administrative data can answer questions that require large sample sizes or detailed data on hard-to-reach populations, and generate evidence with a high level of external validity and applicability for policy making. There are unique challenges in the appropriate research use of linked administrative data, for example with respect to bias from linkage errors where records cannot be linked or are linked together incorrectly. For confidentiality and other reasons, the separation of data linkage processes and analysis of linked data is generally regarded as best practice. However, the ‘black box’ of data linkage can make it difficult for researchers to judge the reliability of the resulting linked data for their required purposes. This article aims to provide an overview of challenges in linking administrative data for research. We aim to increase understanding of the implications of (i) the data linkage environment and privacy preservation; (ii) the linkage process itself (including data preparation, and deterministic and probabilistic linkage methods) and (iii) linkage quality and potential bias in linked data. We draw on examples from a number of countries to illustrate a range of approaches for data linkage in different contexts. |
Keywords | data linkage; record linkage; epidemiological studies; measurement error; selection bias; data accuracy; administrative data |
Year | 2017 |
Journal | Big Data and Society |
Journal citation | 4 (2), pp. 1 - 12 |
Publisher | SAGE Publications |
ISSN | 2053-9517 |
Digital Object Identifier (DOI) | https://doi.org/10.1177/2053951717745678 |
Open access | Open access |
Page range | 1 - 12 |
Research Group | Institute for Learning Sciences and Teacher Education (ILSTE) |
Publisher's version | License |
Place of publication | United Kingdom |
https://acuresearchbank.acu.edu.au/item/85v26/challenges-in-administrative-data-linkage-for-research
Download files
Publisher's version
OA_Harron_2017_Challenges_in_administrative_data_linkage_for.pdf | |
License: CC BY 4.0 |
156
total views133
total downloads4
views this month4
downloads this month