Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs

Journal article


Walkley, Carl and Li, Jin Billy 2017. Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs. Genome Biology. 18 (1), pp. 1 - 13. https://doi.org/10.1186/s13059-017-1347-3
AuthorsWalkley, Carl and Li, Jin Billy
Abstract

One of the most prevalent forms of post-transcritpional RNA modification is the conversion of adenosine nucleosides to inosine (A-to-I), mediated by the ADAR family of enzymes. The functional requirement and regulatory landscape for the majority of A-to-I editing events are, at present, uncertain. Recent studies have identified key in vivo functions of ADAR enzymes, informing our understanding of the biological importance of A-to-I editing. Large-scale studies have revealed how editing is regulated both in cis and in trans. This review will explore these recent studies and how they broaden our understanding of the functions and regulation of ADAR-mediated RNA editing.

Year2017
JournalGenome Biology
Journal citation18 (1), pp. 1 - 13
PublisherBioMed Central
ISSN1474-7596
Digital Object Identifier (DOI)https://doi.org/10.1186/s13059-017-1347-3
Scopus EID2-s2.0-85032579510
Open accessOpen access
Page range1 - 13
Research GroupMary MacKillop Institute for Health Research
Publisher's version
License
Place of publicationUnited Kingdom
EditorsB. Cheifet
Permalink -

https://acuresearchbank.acu.edu.au/item/85y27/rewriting-the-transcriptome-adenosine-to-inosine-rna-editing-by-adars

Download files

  • 0
    total views
  • 1
    total downloads
  • 0
    views this month
  • 1
    downloads this month

Export as

Related outputs

Cell death following the loss of ADAR1 mediated A-to-I RNA editing is not effected by the intrinsic apoptosis pathway
Walkley, Carl R. and Kile, Benjamin T. 2019. Cell death following the loss of ADAR1 mediated A-to-I RNA editing is not effected by the intrinsic apoptosis pathway. Cell Death and Disease. 10, pp. 1 - 5. https://doi.org/10.1038/s41419-019-2160-6
Modeling human RNA spliceosome mutations in the mouse: Not all mice were created equal
Xu, Jane Jialu, Smeets, Monique F., Tan, Shuh Ying, Wall, Meaghan, Purton, Louise E. and Walkley, Carl R. 2019. Modeling human RNA spliceosome mutations in the mouse: Not all mice were created equal. Experimental Hematology. 70, pp. 10 - 23. https://doi.org/10.1016/j.exphem.2018.11.001
Defining the functions of adenosine-to-inosine RNA editing through hematology
Heraud-Farlow, Jacki E., Chalk, Alistair M. and Walkley, Carl R. 2019. Defining the functions of adenosine-to-inosine RNA editing through hematology. Current Opinion in Hematology. 26 (4), pp. 241 - 248. https://doi.org/10.1097/MOH.0000000000000514
Modeling human RNA spliceosome mutations in the mouse: Not all mice were created equal
Xu, Jane Jialu, Smeets, Monique F., Tan, Shuh Ying, Wall, Meaghan, Purton, Louise E. and Walkley, Carl R. 2019. Modeling human RNA spliceosome mutations in the mouse: Not all mice were created equal. Experimental Hematology. 70, pp. 10 - 23. https://doi.org/10.1016/j.exphem.2018.11.001
Hemopoietic Cell Kinase amplification with Protein Tyrosine Phosphatase Receptor T depletion leads to polycythemia, aberrant marrow erythoid maturation, and splenomegaly
Ku, Matthew, MacKinnon, Ruth N., Wall, Meaghan, Narayan, Nisha, Walkley, Carl, Cheng, Heung-Chin, Campbell, Lynda J., Purton, Louise E. and Nandurkar, Harshal 2019. Hemopoietic Cell Kinase amplification with Protein Tyrosine Phosphatase Receptor T depletion leads to polycythemia, aberrant marrow erythoid maturation, and splenomegaly. Scientific Reports. 9 (1), pp. 1 - 11. https://doi.org/10.1038/s41598-019-43373-6
ATP-dependent helicase activity is dispensable for the physiological functions of Recql4
Castillo-Tandazo, Wilson, Smeets, Monique F., Murphy, Vincent, Liu, Rui, Hodson, Charlotte, Heierhorst, Jörg, Deans, Andrew J. and Walkley, Carl R. 2019. ATP-dependent helicase activity is dispensable for the physiological functions of Recql4. PLoS Genetics. 15 (7), pp. 1 - 19. https://doi.org/10.1371/journal.pgen.1008266
The majority of A-to-I RNA editing is not required for mammalian homeostasis
Chalk, Alistair M., Taylor, Scott, Heraud-Farlow, Jacki E. and Walkley, Carl 2019. The majority of A-to-I RNA editing is not required for mammalian homeostasis. Genome Biology. 20, pp. 1 - 14. https://doi.org/10.1186/s13059-019-1873-2
Smac mimetics LCL161 and GDC-0152 inhibit osteosarcoma growth and metastasis in mice
Shekhar, Tanmay M., Burvenich, Ingrid J. G., Harris, Michael A., Rigopoulos, Angela, Zanker, Damien, Spurling, Alex, Parker, Belinda S., Walkley, Carl R., Scott, Andrew M. and Hawkins, Christine J. 2019. Smac mimetics LCL161 and GDC-0152 inhibit osteosarcoma growth and metastasis in mice. BMC Cancer. 19, pp. 1 - 18. https://doi.org/10.1186/s12885-019-6103-5
Srsf2P95H initiates myeloid bias and myelodysplastic/myeloproliferative syndrome from hemopoietic stem cells
Smeets, Monique F., Tan, Shuh Ying, Xu, Jane Jialu, Anande, Govardhan, Unnikrishnan, Ashwin, Chalk, Alistair M., Taylor, Scott, Pimanda, John E., Wall, Meaghan, Purton, L. E. and Walkley, Carl 2018. Srsf2P95H initiates myeloid bias and myelodysplastic/myeloproliferative syndrome from hemopoietic stem cells. Blood. 132 (6), pp. 608 - 621. https://doi.org/10.1182/blood-2018-04-845602
Small animal models for the study of bone sarcoma pathogenesis: characteristics, therapeutic interests and limitations
Jacques, Camille, Renema, Nathalie, Lezot, Frederic, Ory, Benjamin, Walkley, Carl, Grigoriadis, Agi E. and Heymann, Dominique 2018. Small animal models for the study of bone sarcoma pathogenesis: characteristics, therapeutic interests and limitations. Journal of Bone Oncology. 12, pp. 7 - 13. https://doi.org/10.1016/j.jbo.2018.02.004
ADAR1-mediated RNA editing is required for thymic self-tolerance and inhibition of autoimmunity
Nakahama, Taisuke, Kato, Yuki, Kim, Jung In, Vongpipatana, Tuangtong, Suzuki, Yutaka, Walkley, Carl R. and Kawahara, Yukio 2018. ADAR1-mediated RNA editing is required for thymic self-tolerance and inhibition of autoimmunity. EMBO Reports. 19 (12), pp. 1 - 18. https://doi.org/10.15252/embr.201846303
mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis
Martin, Sally K., Fitter, Stephen, El Khawanky, Nadia, Grose, Randall H., Walkley, Carl, Purton, Louise E., Ruegg, Markus A., Hall, Michael N., Gronthos, Stan and Zannettino, Andrew C. W. 2018. mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis. Scientific Reports. 8 (1), pp. 1 - 10. https://doi.org/10.1038/s41598-018-32858-5
Adar3 is involved in learning and memory in mice
Mladenova, Dessislava, Barry, Guy, Konen, Lyndsey M., Pineda, Sandy S., Guennewig, Boris, Avesson, Lotta, Zinn, Raphael, Schonrock, Nicole, Bitar, Maina, Jonkhout, Nicky, Crumlish, Lauren, Kaczorowski, Dominik C., Gong, Andrew, Pinese, Mark, Franco, Gloria R., Walkley, Carl R., Vissel, Bryce and Mattick, John S. 2018. Adar3 is involved in learning and memory in mice. Frontiers in Neuroscience. 12, pp. 1 - 17. https://doi.org/10.3389/fnins.2018.00243
Tolerance to sustained activation of the cAMP/Creb pathway activity in osteoblastic cells is enabled by loss of p53
Walia, Mannu K., Taylor, Scott, Ho, Patricia M.W., Martin, John and Walkley, Carl 2018. Tolerance to sustained activation of the cAMP/Creb pathway activity in osteoblastic cells is enabled by loss of p53. Cell Death and Disease. 9 (9), pp. 1 - 17. https://doi.org/10.1038/s41419-018-0944-8
The asymmetric cell division regulators par3, scribble and PINS/GPSM2 are not essential for erythroid development or enucleation
Wölwer, Christina B., Gödde, Nathan, Pase, Luke B., Elsum, Imogen A., Lim, Krystle Y. B., Sacirbegovic, Faruk, Walkley, Carl, Ellis, Sharon, Ohno, Shigeo, Matsuzaki, Fumio, Russell, Sarah M. and Humbert, Patrick O. 2017. The asymmetric cell division regulators par3, scribble and PINS/GPSM2 are not essential for erythroid development or enucleation. PLoS ONE. 12 (1), pp. 1 - 14. https://doi.org/10.1371/journal.pone.0170295
mTORC1 plays an important role in skeletal development by controlling preosteoblast differentiation
Fitter, Stephen, Mathews, Mary P., Martin, Sally K., Xie, Jianling, Ooi, Soo Siang, Walkley, Carl, Codrington, John D., Ruegg, Markus A., Hall, Michael N., Proud, Christopher G., Gronthos, Stan and Zannettino, Andrew C. W. 2017. mTORC1 plays an important role in skeletal development by controlling preosteoblast differentiation. Molecular and Cellular Biology. 37 (7), pp. 1 - 20. https://doi.org/10.1128/MCB.00668-16
Murine models of osteosarcoma: A piece of the translational puzzle
Walia, Mannu K., Castillo-Tandazo, Wilson, Mutsaers, Anthony J., Martin, T. John and Walkley, Carl 2017. Murine models of osteosarcoma: A piece of the translational puzzle. Journal of Cellular Biochemistry. 119 (6), pp. 4241 - 4250. https://doi.org/10.1002/jcb.26601
Design, synthesis, and biological activity of 1,2,3-triazolobenzodiazepine BET bromodomain inhibitors
Sharp, Phillip P., Garnier, Jean-Marc, Hatfaludi, Tamas, Xu, Zhen, Segal, David, Jarman, Kate E., Jousset, Hélène, Garnham, Alexandra, Feutrill, John T., Cuzzupe, Anthony, Hall, Peter, Taylor, Scott, Walkley, Carl, Tyler, Dean, Dawson, Mark A., Czabotar, Peter, Wilks, Andrew F., Glaser, Stefan, Huang, David C. S. and Burns, Christopher J. 2017. Design, synthesis, and biological activity of 1,2,3-triazolobenzodiazepine BET bromodomain inhibitors. ACS Medicinal Chemistry Letters. 8 (12), pp. 1298 - 1303. https://doi.org/10.1021/acsmedchemlett.7b00389
Ssb1 and Ssb2 cooperate to regulate mouse hematopoietic stem and progenitor cells by resolving replicative stress
Shi, Wei, Vu, Therese, Boucher, Didier, Biernacka, Anna, Nde, Jules, Pandita, Raj K., Straube, Jasmin, Boyle, Glen M., Al-Ejeh, Fares, Nag, Purba, Jeffery, Jessie, Harris, Janelle L., Bain, Amanda L., Grzelak, Marta, Skrzypczak, Magdalena, Mitra, Abhishek, Dojer, Norbert, Crosetto, Nicola, Cloonan, Nicole, ... Khanna, Kum Kum 2017. Ssb1 and Ssb2 cooperate to regulate mouse hematopoietic stem and progenitor cells by resolving replicative stress. Blood. 129 (18), pp. 2479 - 2492. https://doi.org/10.1182/blood-2016-06-725093
Design, synthesis and biological activity of 1,2,3-triazolobenzodiazepine BET bromodomain inhibitors
Sharp, Phillip P., Garnier, Jean-Marc, Hatfaludi, Tamas, Xu, Zhen, Segal, David, Jarman, Kate E., Jousset, Helene, Garnham, Alexandra, Feutrill, John, Cuzzupe, Anthony, Hall, Peter, Taylor, Scott, Walkley, Carl R., Tyler, Dean, Dawson, Mark A., Czabotar, Peter, Wilks, Andrew F., Glaser, Stefan, Huang, David C. and Burns, Christopher J. 2017. Design, synthesis and biological activity of 1,2,3-triazolobenzodiazepine BET bromodomain inhibitors. ACS Medicinal Chemistry Letters. https://doi.org/10.1021/acsmedchemlett.7b00389
Dynamic landscape and regulation of RNA editing in mammals
Tan, Meng How, Li, Qin, Shanmugam, Raghuvaran, Piskol, Robert, Kohler, Jennefer, Young, Amy N., Liu, Kaiwen Ivy, Zhang, Rui, Ramaswami, Gokul, Ariyoshi, Kentaro, Gupte, Ankita, Keegan, Liam P., George, Cyril X., Ramu, Avinash, Huang, Ni, Pollina, Elizabeth A., Leeman, Dena S., Rustighi, Alessandra, Sharon Goh, Y. P., ... GTEx Consortium 2017. Dynamic landscape and regulation of RNA editing in mammals. Nature. 550, pp. 249 - 254. https://doi.org/10.1038/nature24041
Design, synthesis, and biological activity of 1,2,3-triazolobenzodiazepine BET bromodomain inhibitors
Sharp, Phillip P., Garnier, Jean-Marc, Hatfaludi, Tamas, Xu, Zhen, Segal, David, Jarman, Kate E., Jousset, Hélène, Garnham, Alexandra, Feutrill, John T., Cuzzupe, Anthony, Hall, Peter, Taylor, Scott, Walkley, Carl, Tyler, Dean, Dawson, Mark A., Czabotar, Peter, Wilks, Andrew F., Glaser, Stefan, Huang, David C. S. and Burns, Christopher J. 2017. Design, synthesis, and biological activity of 1,2,3-triazolobenzodiazepine BET bromodomain inhibitors. ACS Medicinal Chemistry Letters. 8 (12), pp. 1298 - 1303. https://doi.org/10.1021/acsmedchemlett.7b00389
Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis
Heraud-Farlow, Jacki E., Chalk, Alistair M., Linder, Sandra, Li, Qin, Taylor, Scott, White, Joshua M., Pang, Lokman, Liddicoat, Brian J., Gupte, Ankita, Li, Jin Billy and Walkley, Carl 2017. Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis. Genome Biology. 18 (1), pp. 1 - 18. https://doi.org/10.1186/s13059-017-1301-4
ADAR1, inosine and the immune sensing system: Distinguishing self from non-self
Liddicoat, Brian J., Chalk, Alistair M. and Walkley, Carl R. 2016. ADAR1, inosine and the immune sensing system: Distinguishing self from non-self. Wiley Interdisciplinary Reviews: RNA. 7 (2), pp. 157 - 172. https://doi.org/10.1002/wrna.1322
PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells
Chandrakanthan, Vashe, Yeola, Avani, Kwan, Jair C., Oliver, Rema A., Qiao, Qiao, Kang, Young Chan, Zarzour, Peter, Beck, Dominik, Boelen, Lies, Unnikrishnan, Ashwin, Villanueva, Jeanette E., Nunez, Andrea C., Knezevic, Kathy, Palu, Cintia, Nasrallah, Rabab, Carnell, Michael, Macmillan, Alex, Whan, Renee, Yu, Yan, ... Pimanda, John E. 2016. PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells. Proceedings of the National Academy of Sciences of USA. 113 (16), pp. E2306 - E2315. https://doi.org/10.1073/pnas.1518244113
Defining the minimal factors required for erythropoiesis through direct lineage conversion
Capellera-Garcia, Sandra, Pulecio, Julian, Dhulipala, Kishori, Siva, Kavitha, Rayon-Estrada, Violeta, Singbrant, Sofie, Sommarin, Mikael N. E., Walkley, Carl R., Soneji, Shamit, Karlsson, Göran, Raya, Ángel, Sankaran, Vijay G. and Flygare, Johan 2016. Defining the minimal factors required for erythropoiesis through direct lineage conversion. Cell Reports. 15 (11), pp. 2550 - 2562. https://doi.org/10.1016/j.celrep.2016.05.027
Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis
Liddicoat, Brian J., Hartner, Jochen C., Piskol, Robert, Ramaswami, Gokul, Chalk, Alistair M., Kingsley, Paul D., Sankaran, Vijay G., Wall, Meaghan, Purton, Louise E., Seeburg, Peter H., Palis, James, Orkin, Stuart H., Lu, Jun, Li, Jin Billy and Walkley, Carl R. 2016. Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis. Experimental Hematology. 44 (10), pp. 947 - 963. https://doi.org/10.1016/j.exphem.2016.06.250
Loss of ephrinB1 in osteogenic progenitor cells impedes endochondral ossification and compromises bone strength integrity during skeletal development
Nguyen, Thao M., Arthur, Agnieszka, Paton, Sharon, Hemming, Sarah, Panagopoulos, Romana, Codrington, John D., Walkley, Carl R., Zannettino, Andrew C. W. and Gronthos, Stan 2016. Loss of ephrinB1 in osteogenic progenitor cells impedes endochondral ossification and compromises bone strength integrity during skeletal development. Bone. 93, pp. 12 - 21. https://doi.org/10.1016/j.bone.2016.09.009
Increased miR-155-5p and reduced miR-148a-3p contribute to the suppression of osteosarcoma cell death
Bhattacharya, S., Chalk, Alistair M., Ng, A. J. M., Martin, T. John, Zannettino, Andrew C. W., Purton, L. E., Lu, J., Baker, E. K. and Walkley, Carl R. 2016. Increased miR-155-5p and reduced miR-148a-3p contribute to the suppression of osteosarcoma cell death. Oncogene. 35 (40), pp. 5282 - 5294. https://doi.org/10.1038/onc.2016.68
The transcription factor ASCIZ and its target DYNLL1 are essential for the development and expansion of MYC-driven B cell lymphoma
Wong, David M., Li, ngli Li, Jurado, Sabine, King, Ashleigh, Bamford, Rebecca, Wall, Meaghan, Walia, Mannu K., Kelly, Gemma L., Walkley, Carl R., Tarlinton, David M., Strasser, Andreas and Heierhorst, Jörg 2016. The transcription factor ASCIZ and its target DYNLL1 are essential for the development and expansion of MYC-driven B cell lymphoma. Cell Reports. 14 (6), pp. 1488 - 1499. https://doi.org/10.1016/j.celrep.2016.01.012
The role of RNA editing by ADAR1 in prevention of innate immune sensing of self-RNA
Heraud-Farlow, Jacki E. and Walkley, Carl R. 2016. The role of RNA editing by ADAR1 in prevention of innate immune sensing of self-RNA. Journal of Molecular Medicine. 94 (10), pp. 1095 - 1102. https://doi.org/10.1007/s00109-016-1416-1
Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance
Walia, Mannu K., Ho, Patricia M. W., Taylor, Scott, Ng, Alvin J. M., Gupte, Ankita, Chalk, Alistair M., Zannettino, Andrew C. W., Martin, T. John and Walkley, Carl R. 2016. Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance. eLife. 5 (April), pp. 1 - 31. https://doi.org/10.7554/eLife.13446
IAP antagonists sensitize murine osteosarcoma cells to killing by TNFα
Shekhar, Tanmay M., Miles, Mark A., Gupte, Ankita, Taylor, Scott, Tascone, Brianna, Walkley, Carl R. and Hawkins, Christine J. 2016. IAP antagonists sensitize murine osteosarcoma cells to killing by TNFα. Oncotarget. 7 (23), pp. 33866 - 33886. https://doi.org/10.18632/oncotarget.8980
Systematic screening identifies dual PI3K and mTOR inhibition as a conserved therapeutic vulnerability in osteosarcoma
Gupte, Ankita, Baker, E. K., Wan, Soo-San, Stewart, Elizabeth, Loh, Amos, Shelat, Anang A., Gould, Cathryn M., Chalk, Alistair M., Taylor, Scott, Lackovic, Kurt, Karlström, Åsa, Mutsaers, Anthony J., Desai, Jayesh, Madhamshettiwar, Piyush B., Zannettino, Andrew C. W., Burns, Christopher J., Huang, David C. S., Dyer, Michael A., Simpson, Kaylene J. and Walkley, Carl 2015. Systematic screening identifies dual PI3K and mTOR inhibition as a conserved therapeutic vulnerability in osteosarcoma. Clinical Cancer Research. 21 (14), pp. 3216 - 3229. https://doi.org/10.1158/1078-0432.CCR-14-3026
Wnt inhibitory factor 1 (WIF1) is a marker of osteoblastic differentiation stage and is not silenced by DNA methylation in osteosarcoma
Baker, Emma K., Taylor, Scott, Gupte, Ankita, Chalk, Alistair M., Bhattacharya, Shreya, Green, Alanna C., Martin, T. John, Strbenac, Dario, Robinson, Mark D., Purton, Louise E. and Walkley, Carl R. 2015. Wnt inhibitory factor 1 (WIF1) is a marker of osteoblastic differentiation stage and is not silenced by DNA methylation in osteosarcoma. Bone. 73, pp. 223 - 232. https://doi.org/10.1016/j.bone.2014.12.063
Src family kinases and their role in hematological malignancies
Ku, Matthew, Wall, Meaghan, MacKinnon, Ruth N., Walkley, Carl R., Purton, Louise E., Tam, Constantine, Izon, David, Campbell, Lynda, Cheng, Heung-Chin and Nandurkar, Harshal 2015. Src family kinases and their role in hematological malignancies. Leukemia and Lymphoma. 56 (3), pp. 577 - 586. https://doi.org/10.3109/10428194.2014.907897
HIF-1α is required for hematopoietic stem cell mobilization and 4-prolyl hydroxylase inhibitors enhance mobilization by stabilizing HIF-1α
Forristal, C. E., Nowlan, B., Jacobsen, R. N., Barbier, V., Walkinshaw, G., Walkley, Carl, Winkler, I. G. and Levesque, J. P. 2015. HIF-1α is required for hematopoietic stem cell mobilization and 4-prolyl hydroxylase inhibitors enhance mobilization by stabilizing HIF-1α. Leukemia. 29 (6), pp. 1366 - 1378. https://doi.org/10.1038/leu.2015.8
The DNA Helicase Recql4 is required for normal osteoblast expansion and osteosarcoma formation
Ng, A. J. M., Walia, Mannu K., Smeets, Monique F., Mutsaers, Anthony J., Sims, Natalie A., Purton, L. E., Walsh, Nicole C., Martin, T. John and Walkley, Carl 2015. The DNA Helicase Recql4 is required for normal osteoblast expansion and osteosarcoma formation. PLoS Genetics. 11 (4), pp. 1 - 25. https://doi.org/10.1371/journal.pgen.1005160
BET inhibitors induce apoptosis through a MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma cells
Baker, E. K., Taylor, Scott, Gupte, Ankita, Sharp, Phillip P., Walia, Mannu K., Walsh, Nicole C., Zannettino, Andrew C. W., Chalk, Alistair M., Burns, Christopher J. and Walkley, Carl 2015. BET inhibitors induce apoptosis through a MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma cells. Scientific Reports. 5, pp. 1 - 14. https://doi.org/10.1038/srep10120
RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself
Liddicoat, Brian J., Piskol, Robert, Chalk, Alistair M., Ramaswami, Gokul, Higuchi, Miyoko, Hartner, Jochen C., Li, Jin Billy, Seeburg, Peter H. and Walkley, Carl 2015. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science. 349 (6252), pp. 1115 - 1120. https://doi.org/10.1126/science.aac7049
Knockdown of PTHR1 in osteosarcoma cells decreases invasion and growth and increases tumor differentiation in vivo
Ho, P. W. M., Goradia, A., Russell, M. R., Chalk, Alistair M., Milley, K. M., Baker, E. K., Danks, J. A., Slavin, John, Walia, Mannu K., Crimeen-Irwin, B., Dickins, R. A., Martin, T. John and Walkley, Carl 2015. Knockdown of PTHR1 in osteosarcoma cells decreases invasion and growth and increases tumor differentiation in vivo. Oncogene. 34 (22), pp. 2922 - 2933. https://doi.org/10.1038/onc.2014.217
RARγ is a negative regulator of osteoclastogenesis
Green, Alanna C., Poulton, Ingrid J., Vrahnas, Christina, Häusler, Karl D., Walkley, Carl, Wu, Joy Y., Martin, T. John, Gillespie, Matthew T., Chandraratna, Roshantha A. S., Quinn, Julian M. W., Sims, Natalie A. and Purton, L. E. 2015. RARγ is a negative regulator of osteoclastogenesis. The Journal of Steroid Biochemistry and Molecular Biology. 150, pp. 46 - 53. https://doi.org/10.1016/j.jsbmb.2015.03.005
Brief report: The differential roles of mTORC1 and mTORC2 in mesenchymal stem cell differentiation
Martin, Sally K., Fitter, Stephen, Dutta, Ankit K., Matthews, Mary P., Walkley, Carl, Hall, Michael N., Ruegg, Markus A., Gronthos, Stan and Zannettino, Andrew C. W. 2015. Brief report: The differential roles of mTORC1 and mTORC2 in mesenchymal stem cell differentiation. Stem Cells. 33 (4), pp. 1359 - 1365. https://doi.org/10.1002/stem.1931
Ciliary neurotrophic factor has intrinsic and extrinsic roles in regulating B cell differentiation and bone structure
Askmyr, Maria, White, Kirby E., Jovic, Tanja, King, Hannah A., Quach, Julie M., Maluenda, Ana C., Baker, E. K., Smeets, Monique F., Walkley, Carl and Purton, L. E. 2015. Ciliary neurotrophic factor has intrinsic and extrinsic roles in regulating B cell differentiation and bone structure. Scientific Reports. 5, pp. 1 - 13. https://doi.org/10.1038/srep15529
PTHrP, its receptor, and protein kinase A activation in osteosarcoma
Walkley, Carl, Walia, Mannu K., Ho, P.W.M. and Martin, T. J. 2014. PTHrP, its receptor, and protein kinase A activation in osteosarcoma. Molecular & Cellular Oncology. 1 (4), pp. 1 - 3. https://doi.org/10.4161/23723548.2014.965624
Gene expression profiling to define the cell intrinsic role of the SKI proto-oncogene in hematopoiesis and myeloid neoplsms
Chalk, Alistair M., Liddicoat, Brian J., Walkley, Carl and Singbrant, Sofie 2014. Gene expression profiling to define the cell intrinsic role of the SKI proto-oncogene in hematopoiesis and myeloid neoplsms. Genomics Data. 2, pp. 189 - 191. https://doi.org/10.1016/j.gdata.2014.06.022
The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease
Singbrant, Sofie, Wall, Meaghan, Moody, Jennifer, Karlsson, Göran, Chalk, Alistair M., Liddicoat, Brian J., Russell, Megan R., Walkley, Carl R. and Karlsson, Stefan 2014. The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease. Haematologica. 99 (4), pp. 647 - 655. https://doi.org/10.3324/haematol.2013.093971
The Rothmund-Thomson syndrome helicase RECQL4 is essential for hematopoiesis
Smeets, Monique F., DeLuca, Elisabetta, Wall, Meaghan, Quach, Julie M., Chalk, Alistair M., Deans, Andrew J., Heierhorst, Jörg, Purton, Louise E., Izon, David J. and Walkley, Carl R. 2014. The Rothmund-Thomson syndrome helicase RECQL4 is essential for hematopoiesis. Journal of Clinical Investigation. 124 (8), pp. 3551 - 3565. https://doi.org/10.1172/JCI75334
Cells of origin in osteosarcoma: Mesenchymal stem cells or osteoblast committed cells?
Mutsaers, Anthony J. and Walkley, Carl R. 2014. Cells of origin in osteosarcoma: Mesenchymal stem cells or osteoblast committed cells? Bone. 62, pp. 56 - 63. https://doi.org/10.1016/j.bone.2014.02.003
Immune response to rb1-regulated senescence limits radiation-Induced osteosarcoma formation
Kansara, Maya, Leong, Huei San, Lin, Dan Mei, Popkiss, Sophie, Pang, Puiyi, Garsed, Dale W., Walkley, Carl R., Cullinane, Carleen, Ellul, Jason, Haynes, Nicole M., Hicks, Rod, Kuijjer, Marieke L., Cleton-Jansen, Anne-Marie, Hinds, Philip W., Smyth, Mark J. and Thomas, David M. 2013. Immune response to rb1-regulated senescence limits radiation-Induced osteosarcoma formation. Journal of Clinical Investigation. 123 (12), pp. 5351 - 5360. https://doi.org/10.1172/JCI70559
Erythroid-extrinsic regulation of normal erythropoiesis by retinoic acid receptors
Dewamitta, Sita R., Joseph, Chacko, Purton, Louise E. and Walkley, Carl R. 2013. Erythroid-extrinsic regulation of normal erythropoiesis by retinoic acid receptors. British Journal of Haematology. 164 (2), pp. 280 - 285. https://doi.org/10.1111/bjh.12578
Modeling distinct osteosarcoma subtypes in vivo using Cre: Lox and lineage-restricted transgenic shRNA
Mutsaers, Anthony J., Ng, Alvin J. M., Baker, Emma K., Russell, Megan R., Chalk, Alistair M., Wall, Meaghan, Liddicoat, Brian J. J., Ho, Patricia W. M., Slavin, John L., Goradia, Ankita, Martin, T. John, Purton, Louise E., Dickins, Ross A. and Walkley, Carl R. 2013. Modeling distinct osteosarcoma subtypes in vivo using Cre: Lox and lineage-restricted transgenic shRNA. Bone. 55 (1), pp. 166 - 178. https://doi.org/10.1016/j.bone.2013.02.016
Darbepoietin-alfa has comparable erythropoietic stimulatory effects to recombinant erythropoietin whilst preserving the bone marrow microenvironment
Dewamitta, Sita R., Russell, Megan R., Nandurkar, Harshal and Walkley, Carl R. 2013. Darbepoietin-alfa has comparable erythropoietic stimulatory effects to recombinant erythropoietin whilst preserving the bone marrow microenvironment. Haematologica. 98 (5), pp. 686 - 690. https://doi.org/10.3324/haematol.2012.078709
Deciphering hematopoietic stem cells in their niches: A critical appraisal of genetic models, lineage tracing, and imaging strategies
Joseph, Chacko, Quach, Julie M., Walkley, Carl R., Lane, Steven W., Celso, Cristina Lo and Purton, Louise E. 2013. Deciphering hematopoietic stem cells in their niches: A critical appraisal of genetic models, lineage tracing, and imaging strategies. Cell Stem Cell. 13 (5), pp. 520 - 533. https://doi.org/10.1016/j.stem.2013.10.010
Hematopoietic AMPK beta1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity
Galic, Sandra, Fullerton, Morgan, Schertzer, Jonathan, Sikkema, Sarah, Marcinko, Katarina, Walkley, Carl, Izon, David, Honeyman, Jane, Chen, Zhi-Ping, Van Denderen, Bryce, Kemp, Bruce and Steinberg, Gregory 2011. Hematopoietic AMPK beta1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. Journal of Clinical Investigation. 121 (12), pp. 4903 - 4915. https://doi.org/10.1172/JCI58577
Hematopoietic AMPK Beta ß1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity
Galic, Sandra, Fullerton, Morgan D., Schertzer, Jonathan D., Sikkema, Sarah, Marcinko, Katarina, Walkley, Carl R., Izon, David, Honeyman, Jane, Chen, Zhi-Ping, van Denderen, Bryce J., Kemp, Bruce Ernest and Steinberg, Gregory R. 2011. Hematopoietic AMPK Beta ß1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. Journal of Clinical Investigation. 121 (12), pp. 4903 - 4915. https://doi.org/10.1172/JCI58577