Activation of AMPK alpha2 is not required for mitochondrial FAT/CD36 accumulation during exercise

Journal article


Monaco, Cynthia, Whitfield, Jamie, Jain, Swati S., Spriet, Lawrence L., Bonen, Arend and Holloway, Graham P.. (2015). Activation of AMPK alpha2 is not required for mitochondrial FAT/CD36 accumulation during exercise. PLoS ONE. 10(5), pp. 1 - 15. https://doi.org/10.1371/journal.pone.0126122
AuthorsMonaco, Cynthia, Whitfield, Jamie, Jain, Swati S., Spriet, Lawrence L., Bonen, Arend and Holloway, Graham P.
Abstract

Exercise has been shown to induce the translocation of fatty acid translocase (FAT/CD36), a fatty acid transport protein, to both plasma and mitochondrial membranes. While previous studies have examined signals involved in the induction of FAT/CD36 translocation to sarcolemmal membranes, to date the signaling events responsible for FAT/CD36 accumulation on mitochondrial membranes have not been investigated. In the current study muscle contraction rapidly increased FAT/CD36 on plasma membranes (7.5 minutes), while in contrast, FAT/CD36 only increased on mitochondrial membranes after 22.5 minutes of muscle contraction, a response that was exercise-intensity dependent. Considering that previous research has shown that AMP activated protein kinase (AMPK) α2 is not required for FAT/CD36 translocation to the plasma membrane, we investigated whether AMPK α2 signaling is necessary for mitochondrial FAT/CD36 accumulation. Administration of 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) induced AMPK phosphorylation, and resulted in FAT/CD36 accumulation on SS mitochondria, suggesting AMPK signaling may mediate this response. However, SS mitochondrial FAT/CD36 increased following acute treadmill running in both wild-type (WT) and AMPKα 2 kinase dead (KD) mice. These data suggest that AMPK signaling is not required for SS mitochondrial FAT/CD36 accumulation. The current data also implicates alternative signaling pathways that are exercise-intensity dependent, as IMF mitochondrial FAT/CD36 content only occurred at a higher power output. Taken altogether the current data suggests that activation of AMPK signaling is sufficient but not required for exercise-induced accumulation in mitochondrial FAT/CD36.

Year2015
JournalPLoS ONE
Journal citation10 (5), pp. 1 - 15
PublisherPublic Library of Science
ISSN1932-6203
Digital Object Identifier (DOI)https://doi.org/10.1371/journal.pone.0126122
Scopus EID2-s2.0-84930659681
Open accessOpen access
Page range1 - 15
Research GroupMary MacKillop Institute for Health Research
Publisher's version
Additional information

[http://creativecommons.org/licenses/by/4.0/]
This work is licensed under a [http://creativecommons.org/licenses/by/4.0/] Creative Commons Attribution 4.0 International License.

Place of publicationUnited States of America
Permalink -

https://acuresearchbank.acu.edu.au/item/8631z/activation-of-ampk-alpha2-is-not-required-for-mitochondrial-fat-cd36-accumulation-during-exercise

  • 114
    total views
  • 49
    total downloads
  • 1
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Ketogenic Diets Are Not Beneficial for Athletic Performance: Response to Noakes
Burke, Louise Mary and Whitfield, Jamie. (2024). Ketogenic Diets Are Not Beneficial for Athletic Performance: Response to Noakes. Medicine and Science in Sports and Exercise. 56(4), pp. 763-765. https://doi.org/10.1249/MSS.0000000000003346
Metabolic Adaptations to Training
Whitfield, Jamie. (2023). Metabolic Adaptations to Training. In Endurance Training - Science and practice  pp. 185-197 Iñigo Mujika S.L.U..
The Impact of a Short-Term Ketogenic Low-Carbohydrate High-Fat Diet on Biomarkers of Intestinal Epithelial Integrity and Gastrointestinal Symptoms
McKay, Alannah Kelli Anique, Wallett, Alice M., McKune, Andrew, Periard, Julien, Saunders, Philo, Whitfield, Jamie, Tee, Nicolin, Heikura, Ida, Ross, Megan Louise Rhys, Sharma, Avish P., Costa, Ricardo J.S. and Burke, Louise Mary. (2023). The Impact of a Short-Term Ketogenic Low-Carbohydrate High-Fat Diet on Biomarkers of Intestinal Epithelial Integrity and Gastrointestinal Symptoms. International Journal of Sport Nutrition and Exercise Metabolism. 33(6), pp. 305-315. https://doi.org/10.1123/ijsnem.2023-0009
Short severe energy restriction with refueling reduces body mass without altering training-associated performance improvement
Burke, Louise M., Whitfield, Jamie, Ross, Megan L., Tee, Nicolin, Sharma, Avish P., King, Andy K., Heikura, Ida A., Morabito, Aimee and McKay, Alannah K. A.. (2023). Short severe energy restriction with refueling reduces body mass without altering training-associated performance improvement. Medicine and Science in Sports and Exercise. 55(8), pp. 1487-1498. https://doi.org/10.1249/MSS.0000000000003169
The use of continuous glucose monitors in sport : Possible applications and considerations
Bowler, Amy-Lee, Whitfield, Jamie, Marshall, Lachlan, Coffey, Vernon G., Burke, Louise M. and Cox, Gregory R.. (2023). The use of continuous glucose monitors in sport : Possible applications and considerations. International Journal of Sport Nutrition and Exercise Metabolism. 33(2), pp. 121-132. https://doi.org/10.1123/ijsnem.2022-0139
Six days of low carbohydrate, not energy availability, alters the iron and immune response to exercise in elite athletes
McKay, Alannah K. A., Peeling, Peter, Pyne, David B., Tee, Nicolin, Whitfield, Jamie, Sharma, Avish P., Heikura, Ida A. and Burke, Louise M.. (2022). Six days of low carbohydrate, not energy availability, alters the iron and immune response to exercise in elite athletes. Medicine and Science in Sports and Exercise. 54(3), pp. 377-387. https://doi.org/10.1249/MSS.0000000000002819
Disrupting AMPK-glycogen binding in mice increases carbohydrate utilization and reduces exercise capacity
Janzen, Natalie R., Whitfield, Jamie, Murray-Segal, Lisa, Kemp, Bruce E., Hawley, John A. and Hoffman, Nolan J.. (2022). Disrupting AMPK-glycogen binding in mice increases carbohydrate utilization and reduces exercise capacity. Frontiers in Physiology. 13, p. 859246. https://doi.org/10.3389/fphys.2022.859246
Dietary manipulation for optimizing endurance training adaptations and performance : Carbohydrate vs. fat
Whitfield, Jamie and Burke, Louise M.. (2021). Dietary manipulation for optimizing endurance training adaptations and performance : Carbohydrate vs. fat. In In Tiidus, Peter M., MacPherson, Rebecca E. K., LeBlanc, Paul J. and Josse, Andrea R. (Ed.). The Routledge handbook on biochemistry of exercise pp. 292-303 Routledge. https://doi.org/10.4324/9781003123835-19
Mice with whole-body disruption of AMPK-glycogen binding have increased adiposity, reduced fat oxidation and altered tissue glycogen dynamics
Janzen, Natalie, Whitfield, Jamie, Murray-Segal, Lisa, Kemp, Bruce E., Hawley, John A. and Hoffman, Nolan J.. (2021). Mice with whole-body disruption of AMPK-glycogen binding have increased adiposity, reduced fat oxidation and altered tissue glycogen dynamics. International Journal of Molecular Sciences. 22(17), p. Article: 9616. https://doi.org/10.3390/ijms22179616
Myofibre hypertrophy in the absence of changes to satellite cell content following concurrent exercise training in young healthy men
Shamim, Baubak, Camera, Donny M. and Whitfield, Jamie. (2021). Myofibre hypertrophy in the absence of changes to satellite cell content following concurrent exercise training in young healthy men. Frontiers in Physiology. 12, p. Article 625044. https://doi.org/10.3389/fphys.2021.625044
Neither beetroot juice supplementation nor increased carbohydrate oxidation enhance economy of prolonged exercise in elite race walkers
Burke, Louise M., Hall, Rebecca, Heikura, Ida A., Ross, Megan L., Tee, Nicolin, Kent, Georgina L., Whitfield, Jamie, Forbes, Sara F., Sharma, Avish P., Jones, Andrew M., Peeling, Peter, Blackwell, Jamie R., Mujika, Iñigo, Mackay, Karen, Kozior, Marta, Vallance, Brent and McKay, Alannah K. A.. (2021). Neither beetroot juice supplementation nor increased carbohydrate oxidation enhance economy of prolonged exercise in elite race walkers. Nutrients. 13(8), p. Article 2767. https://doi.org/10.3390/nu13082767
Acute ketogenic diet and ketone ester supplementation impairs race walk performance
Whitfield, Jamie, Burke, Louise M., McKay, Alannah K. A., Heikura, Ida A., Hall, Rebecca, Fensham, Nikita and Sharma, Avish P.. (2021). Acute ketogenic diet and ketone ester supplementation impairs race walk performance. Medicine and Science in Sports and Exercise. 53(4), pp. 776-784. https://doi.org/10.1249/MSS.0000000000002517
Sustained Exposure to High Carbohydrate Availability Does Not Influence Iron-Regulatory Responses in Elite Endurance Athletes
McKay, A., Peeling, P., Pyne, D.B., Tee, N., Welveart, M., Heikura, I., Sharma, A.P., Whitfield, J., Ross, M., van Swelm, R.P.L., Laarakkers, C.M. and Burke, L.. (2021). Sustained Exposure to High Carbohydrate Availability Does Not Influence Iron-Regulatory Responses in Elite Endurance Athletes. International Journal of Sport Nutrition and Exercise Metabolism. 31(2), pp. 101-108. https://doi.org/10.1123/ijsnem.2020-0224
Chronic pantothenic acid supplementation does not affect muscle coenzyme A content or cycling performance
Whitfield, Jamie, Harris, Roger C., Broad, Elizabeth M., Patterson, Alison K., Ross, Megan L. R., Shaw, Gregory, Spriet, Lawrence L. and Burke, Louise M.. (2021). Chronic pantothenic acid supplementation does not affect muscle coenzyme A content or cycling performance. Applied Physiology, Nutrition and Metabolism. 46(3), pp. 280-283. https://doi.org/10.1139/apnm-2020-0692
Adaptation to Low Carbohydrate High Fat diet is rapid but impairs endurance exercise metabolism and performance despite enhanced glycogen availability
Burke, Louise M., Whitfield, Jamie, Heikura, Ida A., Ross, Megan L. R., Tee, Nicolin, Forbes, Sara F., Hall, Rebecca, McKay, Alannah K. A., Wallett, Alice M. and Sharma, Avish P.. (2021). Adaptation to Low Carbohydrate High Fat diet is rapid but impairs endurance exercise metabolism and performance despite enhanced glycogen availability. Journal of Physiology. 599(3), pp. 771-790. https://doi.org/10.1113/JP280221
Omega-3 polyunsaturated fatty acids mitigate palmitate-induced impairments in skeletal muscle cell viability and differentiation
Tachtsis, Bill, Whitfield, Jamie, Hawley, John A. and Hoffman, Nolan J.. (2020). Omega-3 polyunsaturated fatty acids mitigate palmitate-induced impairments in skeletal muscle cell viability and differentiation. Frontiers in Physiology. 11, pp. 1-13. https://doi.org/10.3389/fphys.2020.00563
Exploring the mechanisms by which nitrate supplementation improves skeletal muscle contractile function: one fibre at a time
Luke C. McIlvenna, David J. Muggeridge and Jamie Whitfield. (2020). Exploring the mechanisms by which nitrate supplementation improves skeletal muscle contractile function: one fibre at a time. The Journal of Physiology. 598(1), pp. 25-27. https://doi.org/10.1113/Jp279118
Genetic loss of AMPK-glycogen binding destabilizes AMPK and disrupts metabolism
Hoffman, Nolan J., Whitfield, Jamie, Janzen, Natalie R., Belhaj, Mehdi R., Galic, Sandra, Murray-Segal, Lisa, Smiles, William J., Ling, Naomi X. Y., Dite, Toby A., Scott, John W., Oakhill, Jonathan S., Brink, Robert, Kemp, Bruce E. and Hawley, John A.. (2020). Genetic loss of AMPK-glycogen binding destabilizes AMPK and disrupts metabolism. Molecular Metabolism. 41, pp. 1-13. https://doi.org/10.1016/j.molmet.2020.101048
Exploring the mechanisms by which nitrate supplementation improves skeletal muscle contractile function: one fibre at a time
McIlvenna, L.C., Muggeridge, D.J. and Whitfield, J.. (2020). Exploring the mechanisms by which nitrate supplementation improves skeletal muscle contractile function: one fibre at a time. The Journal of Physiology. 598(1), pp. 25-27. https://doi.org/10.1113/JP279118
Estimated sweat loss, fluid and CHO intake, and sodium balance of male major junior, AHL, and NHL players during on-ice practices
Gamble, Alexander S. D., Bigg, Jessica L., Vermeulen, Tyler F., Boville, Stephanie M., Eskedjian, Greg S., Jannas-Vela, Sebastian, Whitfield, Jamie, Palmer, Matthew S. and Spriet, Lawrence L.. (2019). Estimated sweat loss, fluid and CHO intake, and sodium balance of male major junior, AHL, and NHL players during on-ice practices. International Journal of Sport Nutrition and Exercise Metabolism. 29(6), pp. 612 - 619. https://doi.org/10.1123/ijsnem.2019-0029
Contemporary nutrition interventions to optimize performance in middle-distance runners
Stellingwerff, Trent, Bovim, Ingvill Måkestad and Whitfield, Jamie. (2019). Contemporary nutrition interventions to optimize performance in middle-distance runners. International Journal of Sport Nutrition and Exercise Metabolism. 29(2), pp. 106 - 116. https://doi.org/10.1123/ijsnem.2018-0241
Interactive roles for AMPK and glycogen from cellular energy sensing to exercise metabolism
Janzen, Natalie, Whitfield, Jamie and Hoffman, Nolan. (2018). Interactive roles for AMPK and glycogen from cellular energy sensing to exercise metabolism. International Journal of Molecular Sciences. 19(11), pp. 1 - 18. https://doi.org/10.3390/ijms19113344
Alpha-Linolenic acid and exercise training independently, and additively, decrease blood pressure and prevent diastolic dysfunction in obese Zucker rats
Barbeau, Pierre-Andre, Holloway, Tanya M., Whitfield, Jamie, Baechler, Brittany L., Quadrilatero, Joe, van Loon, Luc J. C., Chabowski, Adrian and Holloway, Graham P.. (2017). Alpha-Linolenic acid and exercise training independently, and additively, decrease blood pressure and prevent diastolic dysfunction in obese Zucker rats. The Journal of Physiology. 595(13), pp. 4351 - 4364. https://doi.org/10.1113/JP274036
Glucagon receptor knockout mice are protected against acute olanzapine-induced hyperglycemia
Castellani, Laura N., Peppler, Willem T., Sutton, Charles D., Whitfield, Jamie, Charron, Maureen J. and Wright, David C.. (2017). Glucagon receptor knockout mice are protected against acute olanzapine-induced hyperglycemia. Psychoneuroendocrinology. 82, pp. 38 - 45. https://doi.org/10.1016/j.psyneuen.2017.05.005
Beetroot juice increases human muscle force without changing Ca2+-handling proteins
Whitfield, Jamie, Gamu, Daniel, Heigenhauser, George J. F., van Loon, Luc J. C., Spriet, Lawrence L., Tupling, A. Russell and Holloway, Graham P.. (2017). Beetroot juice increases human muscle force without changing Ca2+-handling proteins. Medicine and Science in Sports and Exercise. 49(10), pp. 2016 - 2024. https://doi.org/10.1249/MSS.0000000000001321
Ablating the protein TBC1D1 impairs contraction-induced sarcolemmal glucose transporter 4 redistribution but not insulin-mediated responses in rats
Whitfield, Jamie, Paglialunga, Sabina, Smith, Brennan K., Miotto, Paula M., Simnett, Genevieve, Robson, Holly L., Jain, Swati S., Herbst, Eric A. F., Desjardins, Eric M., Dyck, David J., Spriet, Lawrence L., Steinberg, Gregory R. and Holloway, Graham P.. (2017). Ablating the protein TBC1D1 impairs contraction-induced sarcolemmal glucose transporter 4 redistribution but not insulin-mediated responses in rats. Journal of Biological Chemistry. 292(40), pp. 16653 - 16664. https://doi.org/10.1074/jbc.M117.806786
Beetroot juice supplementation reduces whole body oxygen consumption but does not improve indices of mitochondrial efficiency in human skeletal muscle
Whitfield, J., Ludzki, A., Heigenhauser, G. J. F., Senden, Joan M. G., Verdijk, Lex B., van Loon, Luc J. C., Spriet, L. L. and Holloway, Graham P.. (2016). Beetroot juice supplementation reduces whole body oxygen consumption but does not improve indices of mitochondrial efficiency in human skeletal muscle. Journal of Physiology. 594(2), pp. 421 - 435. https://doi.org/10.1113/JP270844
Taurine and skeletal muscle function
Spriet, Lawrence L. and Whitfield, Jamie. (2015). Taurine and skeletal muscle function. Current Opinion in Clinical Nutrition and Metabolic Care. 18(1), pp. 96 - 101. https://doi.org/10.1097/MCO.0000000000000135
Variable effects of 12 weeks of omega-3 supplementation on resting skeletal muscle metabolism
Gerling, Christopher J., Whitfield, Jamie, Mukai, Kazutaka and Spriet, Lawrence L.. (2014). Variable effects of 12 weeks of omega-3 supplementation on resting skeletal muscle metabolism. Applied Physiology, Nutrition and Metabolism. 39(9), pp. 1083 - 1091. https://doi.org/10.1139/apnm-2014-0049
Omega-3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle
Herbst, E. A. F., Paglialunga, S., Gerling, C., Whitfield, Jamie, Mukai, K., Chabowski, Adrian, Heigenhauser, G. J. F., Spriet, L. L. and Holloway, Graham P.. (2014). Omega-3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle. The Journal of Physiology. 592(6), pp. 1341 - 1352. https://doi.org/10.1113/jphysiol.2013.267336
Beetroot juice supplementation does not improve performance of elite 1500-m runners
Boorsma, Robert K., Whitfield, Jamie and Spriet, Lawrence L.. (2014). Beetroot juice supplementation does not improve performance of elite 1500-m runners. Medicine and Science in Sports and Exercise. 46(12), pp. 2326 - 2334. https://doi.org/10.1249/MSS.0000000000000364