Intelligent clothing for automated recognition of human physical activities in free-living environment

Journal article


Wu, Yuchuan, Chen, Ronghua, Wang, Jin, Sun, Xiangping and She, Mary F. H.. (2012). Intelligent clothing for automated recognition of human physical activities in free-living environment. Journal of the Textile Institute. 103(8), pp. 806 - 816. https://doi.org/10.1080/00405000.2011.611641
AuthorsWu, Yuchuan, Chen, Ronghua, Wang, Jin, Sun, Xiangping and She, Mary F. H.
Abstract

This paper presents an intelligent clothing framework for human daily activity recognition using a single waist-worn tri-axial accelerometer sensor coupled with a robust pattern recognition system. The activity recognition algorithm is realized to distinguish six different physical activities through three major steps: acceleration signal collection/pre-processing, wavelet-based principle component analysis, and a support vector machine classifier. The proposed activity recognition method has been experimentally validated through two batches of trials with an overall mean classification accuracy of 95.25 and 94.87%, respectively. These results suggest that the intelligent clothing is not only able to learn the activity patterns but also capable of generalizing new data from both known and unknown subjects. This enables the proposed intelligent clothing to be applied in a comfortable and in situ assessment of human physical activities, which would open up new market segments to the textile industry.

Keywordswearable; acceleration; signal; discrete wavelet transform
Year2012
JournalJournal of the Textile Institute
Journal citation103 (8), pp. 806 - 816
PublisherTextile Institute
ISSN0040-5000
Digital Object Identifier (DOI)https://doi.org/10.1080/00405000.2011.611641
Scopus EID2-s2.0-84863843687
Page range806 - 816
Research GroupInstitute for Learning Sciences and Teacher Education (ILSTE)
Publisher's version
File Access Level
Controlled
Place of publicationUnited Kingdom
Permalink -

https://acuresearchbank.acu.edu.au/item/86402/intelligent-clothing-for-automated-recognition-of-human-physical-activities-in-free-living-environment

Restricted files

Publisher's version

  • 105
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Teachers' ratings of social skills and problem behaviors as concurrent predictors of students' bullying behavior
Elliott, Stephen N., Hwang, Yoon-Suk and Wang, Jin. (2019). Teachers' ratings of social skills and problem behaviors as concurrent predictors of students' bullying behavior. Journal of Applied Developmental Psychology. 60, pp. 119 - 126. https://doi.org/10.1016/j.appdev.2018.12.005
Why choose teaching? A matter of choice : Evidence from the field
Wyatt-SmithWyatt-Smith, Claire, C., Wang, Jin, Alexander, Colette, Du Plessis, Anna, Hand, Kirstine and Colbert, Peta. (2017). Why choose teaching? A matter of choice : Evidence from the field Australia: Institute for Learning Sciences and Teacher Education, Australian Catholic University.
Probabilistic latent semantic analysis for multichannel biomedical signal clustering
Wang, Jin and She, Mary. (2016). Probabilistic latent semantic analysis for multichannel biomedical signal clustering. IEEE Signal Processing Letters. 23(12), pp. 1821 - 1824. https://doi.org/10.1109/LSP.2016.2623801
An incremental algorithm for discovering routine behaviours from smart meter data
Wang, Jin, Cardell-Oliver, Rachel and Liu, Wei. (2016). An incremental algorithm for discovering routine behaviours from smart meter data. Knowledge-Based Systems. 113, pp. 61 - 74. https://doi.org/10.1016/j.knosys.2016.09.016
Patient admission prediction using a pruned fuzzy min--max neural network with rule extraction
Wang, Jin, Lim, Chee Peng, Creighton, Douglas, Khorsavi, Abbas, Nahavandi, Saeid, Ugon, Julien, Vamplew, Peter, Stranieri, Andrew, Martin, Laura and Freischmidt, Anton. (2014). Patient admission prediction using a pruned fuzzy min--max neural network with rule extraction. Neural Computing and Applications. 26(2), pp. 277 - 289. https://doi.org/10.1007/s00521-014-1631-z
Sparse representation with multi-manifold analysis for texture classification from few training images
Sun, Xiangping, Wang, Jin, She, Mary F. H. and Kong, Lingxue. (2014). Sparse representation with multi-manifold analysis for texture classification from few training images. Image and Vision Computing. 32(11), pp. 835 - 846. https://doi.org/10.1016/j.imavis.2014.07.001
Multichannel biomedical time series clustering via hierarchical probabilistic latent semantic analysis
Wang, Jin, Sun, Xiangping, Nahavandi, Saeid, Kouzani, Abbas, Wu, Yuchuan and She, Mary. (2014). Multichannel biomedical time series clustering via hierarchical probabilistic latent semantic analysis. Computer Methods and Programs in Biomedicine. 117(2), pp. 238 - 246. https://doi.org/10.1016/j.cmpb.2014.06.014
Human identification from ECG signals via sparse representation of local segments
Wang, Jin, She, Mary, Nahavandi, Saeid and Kouzani, Abbas. (2013). Human identification from ECG signals via sparse representation of local segments. IEEE Signal Processing Letters. 20(10), pp. 937 - 940. https://doi.org/10.1109/LSP.2013.2267593
Scale invariant texture classification via sparse representation
Sun, Xiangping, Wang, Jin, She, Mary F. H. and Kong, Lingxue. (2013). Scale invariant texture classification via sparse representation. Neurocomputing. 122, pp. 338 - 348. https://doi.org/10.1016/j.neucom.2013.06.016
Biomedical time series clustering based on non-negative sparse coding and probabilistic topic model
Wang, Jin, Liu, Ping, She, Mary F. H., Nahavandi, Saeid and Kouzani, Abbas. (2013). Biomedical time series clustering based on non-negative sparse coding and probabilistic topic model. Computer Methods and Programs in Biomedicine. 111(3), pp. 629 - 641. https://doi.org/10.1016/j.cmpb.2013.05.022
Sparse representation of local spatial-temporal features with dimensionality reduction for motion recognition
Wang, Jin, Sun, Xiangping, Liu, Ping, She, Mary F. H. and Kong, Lingxue. (2013). Sparse representation of local spatial-temporal features with dimensionality reduction for motion recognition. Neurocomputing. 115, pp. 150 - 160. https://doi.org/10.1016/j.neucom.2013.01.012
Unsupervised mining of long time series based on latent topic model
Wang, Jin, Sun, Xiangping, She, Mary FH, Kouzani, Abbas and Nahavandi, Saeid. (2013). Unsupervised mining of long time series based on latent topic model. Nurocomputing. 103, pp. 93 - 103. https://doi.org/10.1016/j.neucom.2012.09.008
Supervised learning probabilistic latent semantic analysis for human motion analysis
Wang, Jin, Liu, Ping, She, Mary F. H., Kouzani, Abbas and Nahavandi, Saeid. (2013). Supervised learning probabilistic latent semantic analysis for human motion analysis. Neurocomputing. 100, pp. 134 - 143. https://doi.org/10.1016/j.neucom.2011.10.033
Bag-of-words representation for biomedical time series classification
Wang, Jin, Liu, Ping, She, Mary F. H., Nahavandi, Saeid and Kouzani, Abbas. (2013). Bag-of-words representation for biomedical time series classification. Biomedical Signal Processing and Control. 8(6), pp. 634 - 644. https://doi.org/10.1016/j.bspc.2013.06.004