Transparency microplates under impact

Journal article


Lau, Chun Yat, Roslan, Zulhanif, Cheong, Brandon Huey-Ping, Chua, Wei Seong, Liew, Oi Wah and Ng, Tuck Wah. (2014). Transparency microplates under impact. Journal of Colloid and Interface Science. 426, pp. 56 - 63. https://doi.org/10.1016/j.jcis.2014.03.048
AuthorsLau, Chun Yat, Roslan, Zulhanif, Cheong, Brandon Huey-Ping, Chua, Wei Seong, Liew, Oi Wah and Ng, Tuck Wah
Abstract

Transparency microplates enable biochemical analysis in resource-limited laboratories. During the process of transfer, the analytes tittered into the wells may undergo spillage from one well to another due to lateral impact. Sidelong impact tests conducted found the absence of non-linear effects (e.g., viscoelastic behavior) but high energy loss. Finite element simulations conducted showed that the rectangular plate holding the transparencies could undergo z-axis deflections when a normal component of the force was present despite constraints being used. High speed camera sequences confirmed this and also showed the asymmetrical z-axis deflection to cause the contact line closer to impact to displace first when the advancing condition was exceeded. Capillary waves were found to travel toward the contact line at the opposite end, where if the advancing contact angle condition was exceeded, also resulted in spreading. The presence of surface scribing was found to limit contact line movement better. With water drops dispensed on scribed transparencies, immunity from momentum change of up to 9.07 kgm/s on impact was possible for volumes of 40 μL. In the case of glycerol drops immunity from momentum change of up to 9.07 kgm/s on impact extended to volumes of 90 μL. The improved immunity of glycerol was attributed to its heightened dampening characteristics and its higher attenuation of capillary waves. Overall, scribed transparency microplates were able to better withstand spillage from accidental impact. Accidental impact was also found not to cause any detrimental effects on the fluorescence properties of enhanced green fluorescent protein samples tested.

Keywordsmicroplate; transparency; impact; contact angle
Year2014
JournalJournal of Colloid and Interface Science
Journal citation426, pp. 56 - 63
PublisherAcademic Press
ISSN0021-9797
Digital Object Identifier (DOI)https://doi.org/10.1016/j.jcis.2014.03.048
Scopus EID2-s2.0-84899052219
Page range56 - 63
Research GroupSchool of Behavioural and Health Sciences
Publisher's version
File Access Level
Controlled
Grant IDARC/DP120100583
Place of publicationUnited States of America
Permalink -

https://acuresearchbank.acu.edu.au/item/86q2z/transparency-microplates-under-impact

Restricted files

Publisher's version

  • 102
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Growth measurement of surface colonies of bacteria using augmented reality
Wildan, Ardan, Cheong, Brandon Huey-Ping, Xiao, Kevin, Liew, Oi Wah and Ng, Tuck Wah. (2020). Growth measurement of surface colonies of bacteria using augmented reality. Journal of Biological Education. 54(4), pp. 419-432. https://doi.org/10.1080/00219266.2019.1600571
Developing and demonstrating an augmented reality colorimetric titration tool
Tee, Nicholas Yee Kwang, Gan, Hong Seng, Li, Jonathan, Cheong, Brandon Huey-Ping, Tan, Han Yen, Liew, Oi Wah and Ng, Tuck Wah. (2018). Developing and demonstrating an augmented reality colorimetric titration tool. Journal of Chemical Education. 95(3), pp. 393 - 399. https://doi.org/10.1021/acs.jchemed.7b00618
Augmented reality experimentation on oxygen gas generation from hydrogen peroxide and bleach reaction
Gan, Hong Seng, Tee, Nicholas Yee Kwang, Bin Mamtaz, Mohammad Raziun, Xiao, Kevin, Cheong, Brandon Huey-Ping, Liew, Oi Wah and Ng, Tuck Wah. (2018). Augmented reality experimentation on oxygen gas generation from hydrogen peroxide and bleach reaction. Biochemistry and Molecular Biology Education. 46(3), pp. 245 - 252. https://doi.org/10.1002/bmb.21117
Versatile wetting measurement of microplate wells
Ng, Enoch Ming Wei, Cheong, Brandon Huey-Ping, Yu, Yang, Liew, Oi Wah and Ng, Tuck Wah. (2016). Versatile wetting measurement of microplate wells. Review of Scientific Instruments. 87(11), pp. 115107-1 - 115107-7. https://doi.org/10.1063/1.4965038
Controlled transport of captive bubbles on plastrons
Huynh, So Hung, Lau, Chun Yat, Cheong, Brandon Huey-Ping, Muradoglu, Murat, Liew, Oi Wah and Ng, Tuck Wah. (2015). Controlled transport of captive bubbles on plastrons. Soft Matter. 11(38), pp. 7474 - 7477. https://doi.org/10.1039/c5sm01910a
Plastron-mediated growth of captive bubbles on superhydrophobic surfaces
Huynh, So Hung, Zahidi, Alifa Afiah Ahmad, Muradoglu, Murat, Cheong, Brandon Huey-Ping and Ng, Tuck Wah. (2015). Plastron-mediated growth of captive bubbles on superhydrophobic surfaces. Langmuir. 31(24), pp. 6695 - 6703. https://doi.org/10.1021/acs.langmuir.5b00058
Concentrating nanoparticles in environmental monitoring
Cheong, Brandon Huey-Ping, Muradoglu, Murat, Liew, Oi Wah and Ng, Tuck Wah. (2015). Concentrating nanoparticles in environmental monitoring. Environmental Toxicology and Pharmacology. 40(1), pp. 187 - 190. https://doi.org/10.1016/j.etap.2015.06.015
Drop transfer between superhydrophobic wells using air logic control
Vuong, Thach, Cheong, Brandon Huey-Ping, Huynh, So Hung, Muradoglu, Murat, Liew, Oi Wah and Ng, Tuck Wah. (2015). Drop transfer between superhydrophobic wells using air logic control. Lab on a Chip. 15(4), pp. 991 - 995. https://doi.org/10.1039/c4lc01273a
Liquid-body resonance while contacting a rotating superhydrophobic surface
Chong, Matthew Lai Ho, Cheng, Michael, Katariya, Mayur, Muradoglu, Murat, Cheong, Brandon Huey-Ping, Zahidi, Alifa Afiah Ahmad, Yu, Yang, Liew, Oi Wah and Ng, Tuck Wah. (2015). Liquid-body resonance while contacting a rotating superhydrophobic surface. The European Physical Journal E. 38(119), pp. 1 - 9. https://doi.org/10.1140/epje/i2015-15119-y
Glycerol-water sessile drop elongation on PTFE inclines in relation to biochemical applications
Zahidi, Alifa Afiah Ahmad, Cheong, Brandon Huey-Ping, Huynh, So Hung, Vuong, Thach, Liew, Oi Wah and Ng, Tuck Wah. (2015). Glycerol-water sessile drop elongation on PTFE inclines in relation to biochemical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 486, pp. 21 - 28. https://doi.org/10.1016/j.colsurfa.2015.09.007
Uphill airflow transport of drops on superhydrophobic inclines
Chung, Dwayne Kim Chung, Katariya, Mayur, Huynh, So Hung, Cheong, Brandon Huey-Ping, Liew, Oi Wah, Muradoglu, Murat and Ng, Tuck Wah. (2015). Uphill airflow transport of drops on superhydrophobic inclines. Colloid and Interface Science Communication. 6, pp. 1 - 4. https://doi.org/10.1016/j.colcom.2015.06.001
Microplates based on liquid bridges between glass rods
Cheong, Brandon Huey-Ping, Lye, Jonathan Kok Keung, Backhous, Scott, Liew, Oi Wah and Ng, Tuck Wah. (2013). Microplates based on liquid bridges between glass rods. Journal of Colloid and Interface Science. 397, pp. 177 - 184. https://doi.org/10.1016/j.jcis.2013.01.043
Precise drop dispensation on superhydrophobic surfaces using acoustic nebulization
Vuong, Thach, Qi, Aisha, Muradoglu, Murat, Cheong, Brandon Huey-Ping, Liew, Oi Wah, Ang, Cui Xia, Fu, Jing, Yeo, Leslie, Friend, James and Ng, Tuck Wah. (2013). Precise drop dispensation on superhydrophobic surfaces using acoustic nebulization. Soft Matter. 9(13), pp. 3631 - 3639. https://doi.org/10.1039/c3sm00016h
Surface-scribed transparency-based microplates
Li, Xin Ye, Cheong, Brandon Huey-Ping, Somers, Anthony, Liew, Oi Wah and Ng, Tuck Wah. (2013). Surface-scribed transparency-based microplates. Langmuir. 29(2), pp. 849 - 855. https://doi.org/10.1021/la304394s
MRT letter: Micro-to nanoscale sample collection for high throughput microscopy
Cheong, Brandon Huey-Ping, Liew, Oi Wah and Ng, Tuck Wah. (2013). MRT letter: Micro-to nanoscale sample collection for high throughput microscopy. Microscopy Research and Technique. 76(8), pp. 767 - 773. https://doi.org/10.1002/jemt.22238