Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter
Journal article
De Santis, Silvia, Jones, Derek Kenton and Roebroeck, Alard. (2016). Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter. NeuroImage. 130, pp. 91 - 103. https://doi.org/10.1016/j.neuroimage.2016.01.047
Authors | De Santis, Silvia, Jones, Derek Kenton and Roebroeck, Alard |
---|---|
Abstract | Axonal density and diameter are two fundamental properties of brain white matter. Recently, advanced diffusion MRI techniques have made these two parameters accessible in vivo. However, the techniques available to estimate such parameters are still under development. For example, current methods to map axonal diameters capture relative trends over different structures, but consistently over-estimate absolute diameters. Axonal density estimates are more accessible experimentally, but different modeling approaches exist and the impact of the experimental parameters has not been thoroughly quantified, potentially leading to incompatibility of results obtained in different studies using different techniques. Here, we characterise the impact of diffusion time on axonal density and diameter estimates using Monte Carlo simulations and STEAM diffusion MRI at 7 T on 9 healthy volunteers. We show that axonal density and diameter estimates strongly depend on diffusion time, with diameters almost invariably overestimated and density both over and underestimated for some commonly used models. Crucially, we also demonstrate that these biases are reduced when the model accounts for diffusion time dependency in the extra-axonal space. For axonal density estimates, both upward and downward bias in different situations are removed by modeling extra-axonal time-dependence, showing increased accuracy in these estimates. For axonal diameter estimates, we report increased accuracy in ground truth simulations and axonal diameter estimates decreased away from high values given by earlier models and towards known values in the human corpus callosum when modeling extra-axonal time-dependence. Axonal diameter feasibility under both advanced and clinical settings is discussed in the light of the proposed advances. |
Keywords | CHARMED; white matter microstructure; STEAM diffusion MRI; diffusion time; axonal diameters; axonal density |
Year | 2016 |
Journal | NeuroImage |
Journal citation | 130, pp. 91 - 103 |
Publisher | Academic Press Inc. |
ISSN | 1053-8119 |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.neuroimage.2016.01.047 |
Scopus EID | 2-s2.0-84958545822 |
Open access | Open access |
Page range | 91 - 103 |
Publisher's version | |
Additional information | Crown Copyright © 2016 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
Place of publication | United States |
https://acuresearchbank.acu.edu.au/item/86x14/including-diffusion-time-dependence-in-the-extra-axonal-space-improves-in-vivo-estimates-of-axonal-diameter-and-density-in-human-white-matter
Download files
105
total views297
total downloads2
views this month0
downloads this month