Using genetic algorithms to abbreviate the mindfulness inventory for sport: A substantive-methodological synthesis
Journal article
Noetel, Michael, Ciarrochi, Joseph, Sahdra, Baljinder and Lonsdale, Chris. (2019). Using genetic algorithms to abbreviate the mindfulness inventory for sport: A substantive-methodological synthesis. Psychology of Sport and Exercise. 45(101545), pp. 1 - 11. https://doi.org/10.1016/j.psychsport.2019.101545
Authors | Noetel, Michael, Ciarrochi, Joseph, Sahdra, Baljinder and Lonsdale, Chris |
---|---|
Abstract | Objectives: To demonstrate the use of machine-learning for reducing questionnaire response burden, we created multiple, shorter versions of the Mindfulness Inventory for Sport. We then tested the reliability and validity of scores derived from these shorter versions in athletic populations. Design: We used genetic algorithms to shorten the measure, and both cross-sectional and longitudinal data to test psychometric properties. Method: We collected data from 859 undergraduate exercise science students and 118 golfers. We used 75% of the student sample to shorten the measure, and the rest of the data to test the internal consistency, test-retest reliability, content validity, and factorial validity. For criterion validity, we explored relationships between the subscales and other measures of mindfulness, golf handicaps, and an objective measure of putting accuracy. Results: Genetic algorithms efficiently generated stable solutions to shortening the measure. Reliability decreased as the measure become shorter—especially between three and two items per subscale—but remained acceptable. Validity metrics for shorter versions were as good, and sometimes better, than the full questionnaire. Awareness and refocusing subscales demonstrated weak associations with golf handicap for long and short versions. Non-judgment showed no significant associations, and no subscales significantly predicted putting performance. Conclusions: Genetic algorithms provide efficient solutions to reducing questionnaire response burden for athletes. |
Keywords | psychometric validity; reliability; machine learning; athletes; mindfulness; acceptance |
Year | 2019 |
Journal | Psychology of Sport and Exercise |
Journal citation | 45 (101545), pp. 1 - 11 |
Publisher | Elsevier Ltd |
ISSN | 1469-0292 |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.psychsport.2019.101545 |
Scopus EID | 2-s2.0-85067029437 |
Page range | 1 - 11 |
Research Group | Institute for Positive Psychology and Education |
Publisher's version | File Access Level Controlled |
Place of publication | United Kingdom |
https://acuresearchbank.acu.edu.au/item/87q93/using-genetic-algorithms-to-abbreviate-the-mindfulness-inventory-for-sport-a-substantive-methodological-synthesis
Restricted files
Publisher's version
288
total views0
total downloads37
views this month0
downloads this month