Biomedical time series clustering based on non-negative sparse coding and probabilistic topic model
Journal article
Wang, Jin, Liu, Ping, She, Mary F. H., Nahavandi, Saeid and Kouzani, Abbas. (2013). Biomedical time series clustering based on non-negative sparse coding and probabilistic topic model. Computer Methods and Programs in Biomedicine. 111(3), pp. 629 - 641. https://doi.org/10.1016/j.cmpb.2013.05.022
Authors | Wang, Jin, Liu, Ping, She, Mary F. H., Nahavandi, Saeid and Kouzani, Abbas |
---|---|
Abstract | Biomedical time series clustering that groups a set of unlabelled temporal signals according to their underlying similarity is very useful for biomedical records management and analysis such as biosignals archiving and diagnosis. In this paper, a new framework for clustering of long-term biomedical time series such as electrocardiography (ECG) and electroencephalography (EEG) signals is proposed. Specifically, local segments extracted from the time series are projected as a combination of a small number of basis elements in a trained dictionary by non-negative sparse coding. A Bag-of-Words (BoW) representation is then constructed by summing up all the sparse coefficients of local segments in a time series. Based on the BoW representation, a probabilistic topic model that was originally developed for text document analysis is extended to discover the underlying similarity of a collection of time series. The underlying similarity of biomedical time series is well captured attributing to the statistic nature of the probabilistic topic model. Experiments on three datasets constructed from publicly available EEG and ECG signals demonstrates that the proposed approach achieves better accuracy than existing state-of-the-art methods, and is insensitive to model parameters such as length of local segments and dictionary size. |
Keywords | unsupervised learning; bag-of-words; probabilistic topic model; sparse coding |
Year | 2013 |
Journal | Computer Methods and Programs in Biomedicine |
Journal citation | 111 (3), pp. 629 - 641 |
Publisher | Elsevier Ireland Ltd. |
ISSN | 0169-2607 |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.cmpb.2013.05.022 |
Scopus EID | 2-s2.0-84880602813 |
Page range | 629 - 641 |
Research Group | Institute for Learning Sciences and Teacher Education (ILSTE) |
Publisher's version | File Access Level Controlled |
Place of publication | Ireland |
https://acuresearchbank.acu.edu.au/item/87v2q/biomedical-time-series-clustering-based-on-non-negative-sparse-coding-and-probabilistic-topic-model
Restricted files
Publisher's version
124
total views0
total downloads1
views this month0
downloads this month