Inhibition of AMP-activated protein kinase at the allosteric drug-binding site promotes islet insulin release
Journal article
Scott, John, Galic, Sandra, Graham, Kate, Foitzik, Richard, Ling, Naomi, Dite, Toby, Issa, Samah, Langendorf, Chris, Weng, Qing, Thomas, Helen, Kay, Thomas, Birnberg, Neal, Steinberg, Gregory, Kemp, Bruce and Oakhill, Jonathan. (2015). Inhibition of AMP-activated protein kinase at the allosteric drug-binding site promotes islet insulin release. Chemistry and Biology. 22(6), pp. 705 - 711. https://doi.org/10.1016/j.chembiol.2015.05.011
Authors | Scott, John, Galic, Sandra, Graham, Kate, Foitzik, Richard, Ling, Naomi, Dite, Toby, Issa, Samah, Langendorf, Chris, Weng, Qing, Thomas, Helen, Kay, Thomas, Birnberg, Neal, Steinberg, Gregory, Kemp, Bruce and Oakhill, Jonathan |
---|---|
Abstract | The AMP-activated protein kinase (AMPK) is a metabolic stress-sensing αβγ heterotrimer responsible for energy homeostasis. Pharmacological inhibition of AMPK is regarded as a therapeutic strategy in some disease settings including obesity and cancer; however, the broadly used direct AMPK inhibitor compound C suffers from poor selectivity. We have discovered a dihydroxyquinoline drug (MT47-100) with novel AMPK regulatory properties, being simultaneously a direct activator and inhibitor of AMPK complexes containing the β1 or β2 isoform, respectively. Allosteric inhibition by MT47-100 was dependent on the β2 carbohydrate-binding module (CBM) and determined by three non-conserved CBM residues (Ile81, Phe91, Ile92), but was independent of β2-Ser108 phosphorylation. Whereas MT47-100 regulation of total cellular AMPK activity was determined by β1/β2 expression ratio, MT47-100 augmented glucose-stimulated insulin secretion from isolated mouse pancreatic islets via a β2-dependent mechanism. Our findings highlight the therapeutic potential of isoform-specific AMPK allosteric inhibitors. |
Year | 2015 |
Journal | Chemistry and Biology |
Journal citation | 22 (6), pp. 705 - 711 |
ISSN | 1074-5521 |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.chembiol.2015.05.011 |
Page range | 705 - 711 |
Publisher's version | File Access Level Controlled |
https://acuresearchbank.acu.edu.au/item/887zq/inhibition-of-amp-activated-protein-kinase-at-the-allosteric-drug-binding-site-promotes-islet-insulin-release
Restricted files
Publisher's version
191
total views0
total downloads16
views this month0
downloads this month