RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself
Journal article
Liddicoat, Brian J., Piskol, Robert, Chalk, Alistair M., Ramaswami, Gokul, Higuchi, Miyoko, Hartner, Jochen C., Li, Jin Billy, Seeburg, Peter H. and Walkley, Carl. (2015). RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science. 349(6252), pp. 1115 - 1120. https://doi.org/10.1126/science.aac7049
Authors | Liddicoat, Brian J., Piskol, Robert, Chalk, Alistair M., Ramaswami, Gokul, Higuchi, Miyoko, Hartner, Jochen C., Li, Jin Billy, Seeburg, Peter H. and Walkley, Carl |
---|---|
Abstract | Adenosine-to-inosine (A-to-I) editing is a highly prevalent posttranscriptional modification of RNA, mediated by ADAR (adenosine deaminase acting on RNA) enzymes. In addition to RNA editing, additional functions have been proposed for ADAR1. To determine the specific role of RNA editing by ADAR1, we generated mice with an editing-deficient knock-in mutation (Adar1E861A, where E861A denotes Glu861→Ala861). Adar1E861A/E861A embryos died at ~E13.5 (embryonic day 13.5), with activated interferon and double-stranded RNA (dsRNA)–sensing pathways. Genome-wide analysis of the in vivo substrates of ADAR1 identified clustered hyperediting within long dsRNA stem loops within 3′ untranslated regions of endogenous transcripts. Finally, embryonic death and phenotypes of Adar1E861A/E861A were rescued by concurrent deletion of the cytosolic sensor of dsRNA, MDA5. A-to-I editing of endogenous dsRNA is the essential function of ADAR1, preventing the activation of the cytosolic dsRNA response by endogenous transcripts. |
Year | 2015 |
Journal | Science |
Journal citation | 349 (6252), pp. 1115 - 1120 |
Publisher | American Association for the Advancement of Science |
ISSN | 0036-8075 |
Digital Object Identifier (DOI) | https://doi.org/10.1126/science.aac7049 |
Scopus EID | 2-s2.0-84941100160 |
Page range | 1115 - 1120 |
Research Group | Mary MacKillop Institute for Health Research |
Publisher's version | File Access Level Controlled |
Place of publication | United States of America |
https://acuresearchbank.acu.edu.au/item/88w00/rna-editing-by-adar1-prevents-mda5-sensing-of-endogenous-dsrna-as-nonself
Restricted files
Publisher's version
150
total views0
total downloads4
views this month0
downloads this month