Dynamic clustering with soft computing

Journal article


Peters, Georg and Weber, Richard. (2012) Dynamic clustering with soft computing. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2(3), pp. 226 - 236. https://doi.org/10.1002/widm.1050
AuthorsPeters, Georg and Weber, Richard
Abstract

Clustering methods are one of the most popular approaches to data mining. They have been successfully used in virtually any field covering domains such as economics, marketing, bioinformatics, engineering, and many others. The classic cluster algorithms require static data structures. However, there is an increasing need to address changing data patterns. On the one hand, this need is generated by the rapidly growing amount of data that is collected by modern information systems and that has led to an increasing interest in data mining as its whole again. On the other hand, modern economies and markets do not deal with stable settings any longer but are facing the challenge to adapt to constantly changing environments. These include seasonal changes but also long-term trends that structurally change whole economies, wipe out companies that cannot adapt to these trends, and create opportunities for entrepreneurs who establish large multinational corporations virtually out of nothing in just one decade or two. Hence, it is essential for almost any organization to address these changes. Obviously, players that have information on changes first possibly obtain a strategic advantage over their competitors. This has motivated an increasing number of researchers to enrich and extend classic static clustering algorithms by dynamic derivatives. In the past decades, very promising approaches have been suggested; some selected ones will be introduced in this review. © 2012 Wiley Periodicals, Inc.

Year2012
JournalWiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
Journal citation2 (3), pp. 226 - 236
PublisherJohn Wiley and Sons Ltd
ISSN1942-4787
Digital Object Identifier (DOI)https://doi.org/10.1002/widm.1050
Scopus EID2-s2.0-84864780110
Page range226 - 236
Research GroupSchool of Arts
Place of publicationUnited Kingdom
Permalink -

https://acuresearchbank.acu.edu.au/item/89x44/dynamic-clustering-with-soft-computing

Restricted files

Publisher's version

  • 4
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Credit scoring using three-way decisions with probabilistic rough sets
Maldonado, Sebastian, Peters, Georg and Weber, Richard. (2020) Credit scoring using three-way decisions with probabilistic rough sets. Information Sciences. 507, pp. 700 - 714. https://doi.org/10.1016/j.ins.2018.08.001
dynXcube – categorizing dynamic data analysis
Peters, Georg and Weber, Richard. (2018) dynXcube – categorizing dynamic data analysis. Information Sciences. 463-464, pp. 21 - 32. https://doi.org/10.1016/j.ins.2018.06.026
A framework supporting literacy in mathematics and software programming
Peters, Georg, Rueckert, Tom and Seruga, Jan. (2018) A framework supporting literacy in mathematics and software programming. Portugal: Scitepress. pp. 497 - 506 https://doi.org/10.5220/0006629304970506
Some potentials of the R-Project Environment for teachers’ and students’ education in mathematics, algorithms’ programming and dynamic website development
Peters, Georg, Rueckert, Tom and Seruga, Jan. (2018) Some potentials of the R-Project Environment for teachers’ and students’ education in mathematics, algorithms’ programming and dynamic website development. United States of America: Association for he Advancement of Computing in Education (AACE). pp. 1816 - 1821
A supply sided analysis of leading MooC platforms and universities
Peters, Georg and Seruga, Jan. (2016) A supply sided analysis of leading MooC platforms and universities. Knowledge Management and E-Learning. 8(1), pp. 158 - 181.
A comparative analysis of MOOC - Australia's position in the international education market
Peters, Georg, Sacker, Doreen and Seruga, Jan. (2015) A comparative analysis of MOOC - Australia's position in the international education market. Australasian Conference on Information Systems. Australia: University of South Australia. pp. 1 - 10
Is there any need for rough clustering?
Peters, Georg. (2015) Is there any need for rough clustering? Pattern Recognition Letters. 53, pp. 31 - 37. https://doi.org/10.1016/j.patrec.2014.11.003
Assessing rough classifiers
Peters, Georg. (2015) Assessing rough classifiers. Fundamenta Informaticae. 137, pp. 493 - 515. https://doi.org/10.3233/FI-2015-1191
Analysis of user-weighted pi rough k-means
Peters, Georg and Lingras, Pawan. (2014) Analysis of user-weighted pi rough k-means. In D Miao, W Pedrycz and D Slezak (Ed.). Rough Sets and Knowledge Technology. Switzerland: Springer. pp. 547 - 556 https://doi.org/10.1007/978-3-319-11740-9_50
Tweeting politicians: An analysis of the usage of a micro blogging system
Roth, Matthias, Peters, Georg and Seruga, Jan. (2014) Tweeting politicians: An analysis of the usage of a micro blogging system. In S. Hammoudi, J. Cordeiro and L. A. Maciaszek & J. Filipe (Ed.). Cham, Switzerland: Springer. pp. 351 - 364 https://doi.org/10.1007/978-3-319-09492-2_21
Rough clustering utilising the principle of indifference
Peters, Georg. (2014) Rough clustering utilising the principle of indifference. Information Sciences. 277, pp. 358 - 374. https://doi.org/10.1016/j.ins.2014.02.073
An illustrative comparison of rough k-Means to classical clustering approaches
Peters, Georg and Crespo, Fernando. (2013) An illustrative comparison of rough k-Means to classical clustering approaches. In D Ciucci, M Inuiguchi and Y Yao (Ed.). Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. Germany: Springer. pp. 337 - 344
Soft clustering: Fuzzy and rough approaches and their extensions and derivatives
Peters, Georg, Crespo, Fernando, Lingas, Pawan and Weber, Richard. (2013) Soft clustering: Fuzzy and rough approaches and their extensions and derivatives. International Journal of Approximate Reasoning. 54(2), pp. 307 - 322. https://doi.org/10.1016/j.ijar.2012.10.003
Some insights into the role of social media in political communication
Roth, Matthias, Peters, Georg and Seruga, Jan. (2013) Some insights into the role of social media in political communication. In S Hammoudi, L Maciaszek and J Cordeiro (Ed.). Proceedings of the 15th International Conference on Enterprise Information Systems. France: Institute for Systems and Technologies of Information, Control and Communication. pp. 353 - 362 https://doi.org/10.5220/0004418603510360
Tackling outliers in granular box regression
Peters, Georg and Lacic, Zdravko. (2012) Tackling outliers in granular box regression. Information Sciences. 212, pp. 44 - 56. https://doi.org/10.1016/j.ins.2012.05.006
Current trends in product lifecycle management
Staisch, Adam, Peters, Georg, Stueckl, Thomas and Seruga, Jan. (2012) Current trends in product lifecycle management. In J Lamp (Ed.). Proceedings of the 23rd Australasian Conference on Information Systems. Geelong, Victoria, Australia: Deakin University Press. pp. 1 - 10
Network Effects in the ERP Systems Market : An Analysis of the Implications of Business Intelligence and Cloud Computing
Peters, Georg and Seruga, Jan. (2012) Network Effects in the ERP Systems Market : An Analysis of the Implications of Business Intelligence and Cloud Computing. International Journal of Advanced Science and Technology. 43, pp. 105 - 114.
Network Effects in the ERP Systems Market: An Analysis of the Implications of Business Intelligence and Cloud Computing
Peters, Georg and Seruga, Jan. (2012) Network Effects in the ERP Systems Market: An Analysis of the Implications of Business Intelligence and Cloud Computing. International Journal of Advanced Science and Technology. 43, pp. 105 - 114.
Dynamic rough clustering and its applications
Peters, Georg, Weber, Richard and Nowatzke, René. (2012) Dynamic rough clustering and its applications. Applied Soft Computing Journal. 12(10), pp. 3193 - 3207. https://doi.org/10.1016/j.asoc.2012.05.015
Cross media and e-publishing
Rogobete, Carina, Peters, Georg and Seruga, Jan. (2012) Cross media and e-publishing. International Journal of u- and e- Service, Science and Technology. 5(2), pp. 17 - 29.
Rough clustering
Lingras, Pawan and Peters, Georg. (2011) Rough clustering. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 1(1), pp. 64 - 72. https://doi.org/10.1002/widm.16
The effectiveness of electronic communication
Peters, Georg, Seruga, Jan and Zellmer, V.. (2011) The effectiveness of electronic communication. In B. White, P. Isaias and F. M. Santoro (Ed.). Proceedings of the IADIS International Conference WWW/Internet 2011. Brazil: IADIS Press. pp. 616 - 619
Analyzing IT business values – A Dominance based Rough Sets Approach perspective
Peters, Georg and Poon, Simon. (2011) Analyzing IT business values – A Dominance based Rough Sets Approach perspective. Expert Systems with Applications. 38(9), pp. 11120 - 11128. https://doi.org/10.1016/j.eswa.2011.02.157
Granular box regression
Peters, Georg. (2011) Granular box regression. IEEE Transactions on Fuzzy Systems. 19(6), pp. 1141 - 1152. https://doi.org/10.1109/TFUZZ.2011.2162416