Human identification from ECG signals via sparse representation of local segments
Journal article
Wang, Jin, She, Mary, Nahavandi, Saeid and Kouzani, Abbas. (2013). Human identification from ECG signals via sparse representation of local segments. IEEE Signal Processing Letters. 20(10), pp. 937 - 940. https://doi.org/10.1109/LSP.2013.2267593
Authors | Wang, Jin, She, Mary, Nahavandi, Saeid and Kouzani, Abbas |
---|---|
Abstract | This work proposes a novel framework to extract compact and discriminative features from Electrocardiogram (ECG) signals for human identification based on sparse representation of local segments. Specifically, local segments extracted from an ECG signal are projected to a small number of basic elements in a dictionary, which is learned from training data. A final representation is extracted by performing a max pooling procedure over all the sparse coefficient vectors in the ECG signal. Unlike most of existing methods for human identification from ECG signals which require segmentation of individual heartbeats or extraction of fiducial points, the proposed method does not need to segment individual heartbeats or detect any fiducial points. The method achieves an 99.48% accuracy on a 100 subjects dataset constructed from a publicly available database, which demonstrates that both local and global structural information are well captured to characterize the ECG signals. |
Keywords | sparse coding; dictionary learning; local features |
Year | 2013 |
Journal | IEEE Signal Processing Letters |
Journal citation | 20 (10), pp. 937 - 940 |
Publisher | Institute of Electrical and Electronics Engineers |
ISSN | 1070-9908 |
Digital Object Identifier (DOI) | https://doi.org/10.1109/LSP.2013.2267593 |
Scopus EID | 2-s2.0-84881158122 |
Page range | 937 - 940 |
Research Group | Institute for Learning Sciences and Teacher Education (ILSTE) |
Publisher's version | File Access Level Controlled |
Place of publication | United States of America |
https://acuresearchbank.acu.edu.au/item/8qq4z/human-identification-from-ecg-signals-via-sparse-representation-of-local-segments
Restricted files
Publisher's version
88
total views0
total downloads2
views this month0
downloads this month