Adult-born dentate granule cell excitability depends on the interaction of neuron age, ontogenetic age and experience
Journal article
Ohline, S. M., Wake, K. L., Hawkridge, M.-V., Dinnunhan, M. F., Hegemann, R. U., Wilson, A., Shoderboeck, L., Logan, B. J., Jungenitz, T., Schwarzacher, S. W., Hughes, S. M. and Abraham, W. C.. (2018). Adult-born dentate granule cell excitability depends on the interaction of neuron age, ontogenetic age and experience. Brain Structure and Function. 223(7), pp. 3213 - 3228. https://doi.org/10.1007/s00429-018-1685-2
Authors | Ohline, S. M., Wake, K. L., Hawkridge, M.-V., Dinnunhan, M. F., Hegemann, R. U., Wilson, A., Shoderboeck, L., Logan, B. J., Jungenitz, T., Schwarzacher, S. W., Hughes, S. M. and Abraham, W. C. |
---|---|
Abstract | Early during their maturation, adult-born dentate granule cells (aDGCs) are particularly excitable, but eventually develop the electrophysiologically quiet properties of mature cells. However, the stability versus plasticity of this quiet state across time and experience remains unresolved. By birthdating two populations of aDGCs across different animal ages, we found for 10-month-old rats the expected reduction in excitability across cells aged 4–12 weeks, as determined by Egr1 immunoreactivity. Unexpectedly, cells 35 weeks old (after genesis at an animal age of 2 months) were as excitable as 4-week-old cells, in the dorsal hippocampus. This high level of excitability at maturity was specific for cells born in animals 2 months of age, as cells born later in life did not show this effect. Importantly, excitability states were not fixed once maturity was gained, but were enhanced by enriched environment exposure or LTP induction, indicating that any maturational decrease in excitability can be compensated by experience. These data reveal the importance of the animal’s age for aDGC excitability, and emphasize their prolonged capability for plasticity during adulthood. |
Keywords | dentate gyrus; adult neurogenesis; thymidine analogues; enriched environment; long-term potentiation |
Year | 2018 |
Journal | Brain Structure and Function |
Journal citation | 223 (7), pp. 3213 - 3228 |
Publisher | Springer |
ISSN | 1863-2653 |
Digital Object Identifier (DOI) | https://doi.org/10.1007/s00429-018-1685-2 |
Scopus EID | 2-s2.0-85047256979 |
Page range | 3213 - 3228 |
Research Group | Mary MacKillop Institute for Health Research |
Publisher's version | File Access Level Controlled |
Place of publication | Germany |
https://acuresearchbank.acu.edu.au/item/8v64q/adult-born-dentate-granule-cell-excitability-depends-on-the-interaction-of-neuron-age-ontogenetic-age-and-experience
Restricted files
Publisher's version
50
total views0
total downloads3
views this month0
downloads this month