Adult neurogenesis and gliogenesis: Possible mechanisms for neurorestoration

Journal article


Zoltan Rusznak, Willem Henskens, Emma Schofield, Woojin Scott Kim and YuHong Fu. (2016). Adult neurogenesis and gliogenesis: Possible mechanisms for neurorestoration. Experimental Neurobiology. 25(3), pp. 103-112. https://doi.org/10.5607/en.2016.25.3.103
AuthorsZoltan Rusznak, Willem Henskens, Emma Schofield, Woojin Scott Kim and YuHong Fu
Abstract

The subgranular zone (SGZ) and subventricular zone (SVZ) are developmental remnants of the germinal regions of the brain, hence they retain the ability to generate neuronal progenitor cells in adult life. Neurogenesis in adult brain has an adaptive function because newly produced neurons can integrate into and modify existing neuronal circuits. In contrast to the SGZ and SVZ, other brain regions have a lower capacity to produce new neurons, and this usually occurs via parenchymal and periventricular cell genesis. Compared to neurogenesis, gliogenesis occurs more prevalently in the adult mammalian brain. Under certain circumstances, interaction occurs between neurogenesis and gliogenesis, facilitating glial cells to transform into neuronal lineage. Therefore, modulating the balance between neurogenesis and gliogenesis may present a new perspective for neurorestoration, especially in diseases associated with altered neurogenesis and/or gliogenesis, cell loss, or disturbed homeostasis of cellular constitution. The present review discusses important neuroanatomical features of adult neurogenesis and gliogenesis, aiming to explore how these processes could be modulated toward functional repair of the adult brain.

Keywordsneurogenesis; gliogenesis; aging; neurodegeneration; neurorestoration
Year2016
JournalExperimental Neurobiology
Journal citation25 (3), pp. 103-112
PublisherKorean Society for Neurobiology
ISSN1226-2560
Digital Object Identifier (DOI)https://doi.org/10.5607/en.2016.25.3.103
Scopus EID2-s2.0-84995554090
Publisher's version
File Access Level
Controlled
Publication process dates
Deposited26 Apr 2021
Permalink -

https://acuresearchbank.acu.edu.au/item/8vy0q/adult-neurogenesis-and-gliogenesis-possible-mechanisms-for-neurorestoration

Restricted files

Publisher's version

  • 43
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Odor enrichment increases hippocampal neuron numbers in mouse
Zoltan Rusznak, Gulgun Sengu, George Paxinos, Woojin Scott Kim and YuHong Fu. (2018). Odor enrichment increases hippocampal neuron numbers in mouse. Experimental Neurobiology. 27(2), pp. 94-102. https://doi.org/10.5607/en.2018.27.2.94
Individual variability of venom from the European adder (Vipera berus berus) from one locality in Eastern Hungary
Tamás Malina, László Krecsák, Alexander Westerström, Gábor Szemán-Nagy, Gyöngyi Gyémánt, Márta M-Hamvas, Edward G. Rowan, Alan L. Harvey, David A. Warrell, Balázs Pál, Zoltan Rusznak and Gábor Vasas. (2017). Individual variability of venom from the European adder (Vipera berus berus) from one locality in Eastern Hungary. Toxicon. 135, pp. 59-70. https://doi.org/10.1016/j.toxicon.2017.06.004
Early in vivo effects of the human mutant amyloid-β protein precursor (hAβPPSwInd) on the mouse olfactory bulb
Rusznák, Zoltán, Kim, Woojin Scott, Hsiao, Jen-Hsiang T., Halliday, Glenda M., Paxinos, George and Fu, YuHong. (2016). Early in vivo effects of the human mutant amyloid-β protein precursor (hAβPPSwInd) on the mouse olfactory bulb. Journal of Alzheimer's Disease. 49(2), pp. 443-457. https://doi.org/10.3233/JAD-150368
The spinal cord of the common marmoset (Callithrix jacchus)
Charles Watson, Gulgun Sengul, Ikuko Tanaka, Zoltan Rusznak and Hironobu Tokuno. (2015). The spinal cord of the common marmoset (Callithrix jacchus). Journal of Neuroscience Research. 93, pp. 164-175. https://doi.org/10.1016/j.neures.2014.12.012
Aging-dependent changes in the cellular composition of the mouse brain and spinal cord
Y. Fu, Y. Yu, G. Paxinos, C. Watson and Z. Rusznak. (2015). Aging-dependent changes in the cellular composition of the mouse brain and spinal cord. Neuroscience. 290, pp. 406-420. https://doi.org/10.1016/j.neuroscience.2015.01.039
Silencing the KCNK9 potassium channel (TASK-3) gene disturbs mitochondrial function, causes mitochondrial depolarization, and induces apoptosis of human melanoma cells
Dénes Nagy, Mónika Gönczi, Beatrix Dienes, Árpád Szöőr, János Fodor, Zsuzsanna Nagy, Adrienn Tóth, Tamás Fodor, Péter Bai, Zoltan Rusznak and László Csernoch. (2014). Silencing the KCNK9 potassium channel (TASK-3) gene disturbs mitochondrial function, causes mitochondrial depolarization, and induces apoptosis of human melanoma cells. Archives of Dermatological Research. 306(10), pp. 885-902. https://doi.org/10.1007/s00403-014-1511-5
Age-dependent alterations of the hippocampal cell composition and proliferative potential in the hAβPPSwInd-J20 mouse
Fu, YuHong, Rusznak, Zoltan, Kwok, John B.J., Kim, Woojin Scott and Paxinos, George. (2014). Age-dependent alterations of the hippocampal cell composition and proliferative potential in the hAβPPSwInd-J20 mouse. Journal of Alzheimer's Disease. 41(4), pp. 1177-1192. https://doi.org/10.3233/JAD-132717
Musculotopic organization of the motor neurons supplying the mouse hindlimb muscles: A quantitative study using Fluoro-Gold retrograde tracing
Tímea Bácskai, Zoltan Rusznak, George Paxinos and Charles Watson. (2014). Musculotopic organization of the motor neurons supplying the mouse hindlimb muscles: A quantitative study using Fluoro-Gold retrograde tracing. Brain Structure and Function. 219(1), pp. 303-321. https://doi.org/10.1007/s00429-012-0501-7