Assessing carbonation in one-part fly ash/slag geopolymer mortar : Change in pore characteristics using the state-of-the-art technique neutron tomography

Journal article


Vu, Tran Huyen, Gowripalan, Nadarajah, De Silva, Pre, Paradowska, Anna, Garbe, Ulf, Kidd, Paul and Sirivivatnanon, Vute. (2020). Assessing carbonation in one-part fly ash/slag geopolymer mortar : Change in pore characteristics using the state-of-the-art technique neutron tomography. Cement and Concrete Composites. 114, p. 103759. https://doi.org/10.1016/j.cemconcomp.2020.103759
AuthorsVu, Tran Huyen, Gowripalan, Nadarajah, De Silva, Pre, Paradowska, Anna, Garbe, Ulf, Kidd, Paul and Sirivivatnanon, Vute
Abstract

Carbonation has long been recognised as a durability issue attributed to corrosion of steel reinforcement in geopolymer materials. The currently available information, however, is not sufficient to gain a deep understanding of this issue, particularly the facet of the carbonation impact on the pore structure of such materials. This paper, thus, assessed the influence of carbonation on porosity and pore size characteristics of one-part fly ash/slag geopolymer mortar, by using neutron tomography. The cutting-edge thermal neutron tomography used in this study provided the prowess of non-destructive 3D analysis of exploring different regions within geopolymers. The results obtained showed that carbonation in the investigated geopolymer mortars drew their porosity down approximately 30% and shifted pore size regions to smaller pore areas. Other evaluations such as changing pH, carbonation front depth and elemental mapping by scanning electron microscopy (SEM) with energy dispersive X-ray spectrometry (EDS) were also performed in this study, in order to supplement the findings of neutron tomography.

Keywordsfly ash/slag geopolymer; carbonation front depth; porosity; pore size distribution; neutron tomography
Year2020
JournalCement and Concrete Composites
Journal citation114, p. 103759
PublisherElsevier Ltd
ISSN0958-9465
Digital Object Identifier (DOI)https://doi.org/10.1016/j.cemconcomp.2020.103759
Scopus EID2-s2.0-85088920344
Research or scholarlyResearch
Page range1-14
FunderAustralian Research Council (ARC)
Publisher's version
License
All rights reserved
File Access Level
Controlled
Output statusPublished
Publication dates
Online28 Jul 2020
Publication process dates
Accepted20 Jul 2020
Deposited28 Jun 2021
ARC Funded ResearchThis output has been funded, wholly or partially, under the Australian Research Council Act 2001
Grant IDARC/IH150100006
Permalink -

https://acuresearchbank.acu.edu.au/item/8w474/assessing-carbonation-in-one-part-fly-ash-slag-geopolymer-mortar-change-in-pore-characteristics-using-the-state-of-the-art-technique-neutron-tomography

Restricted files

Publisher's version

  • 83
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Advances in technologies used in the detection of food adulteration
Chen, Wenbo, Li, Hui, Wang, Yong, De Silva, Pre, Adhikari, Benu P. and Wang, Bo. (2021). Advances in technologies used in the detection of food adulteration. In In Verma, Madan L. (Ed.). Biotechnological approaches in food adulterants pp. 49-78 CRC Press. https://doi.org/10.1201/9780429354557-3
Mechanical and microstructural properties of Alkali Pozzolan Cement (APC)
Kulasuriya, Chandana, Dias, W. P. S., Vimonsatit, Vanissorn and De Silva, P.. (2020). Mechanical and microstructural properties of Alkali Pozzolan Cement (APC). International Journal of Civil Engineering. 18(11), pp. 1281-1292. https://doi.org/10.1007/s40999-020-00534-3
Evaluating effect of GGBFS in alkali-silica reaction in geopolymer mortar with accelerated mortar bar test
Mahanama, Dinesh, De Silva, Pre, Kim, Taehwan, Castel, Arnaud and Khan, Mohammad. (2019). Evaluating effect of GGBFS in alkali-silica reaction in geopolymer mortar with accelerated mortar bar test. Journal of Materials in Civil Engineering. 31(8), pp. 1 - 11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002804
Aqueous leaching of an industrial geopolymer
De Silva, Premalatha, Downs, Jacob, Olufson, Kelly, Davis, Joel, Vance, Eric and Johnson, Greg. (2016). Aqueous leaching of an industrial geopolymer. Journal of Australian Ceramic Society. 52(1), pp. 1 - 6.
Influence and role of feedstock Si and Al content in geopolymer synthesis
De Silva, Pre, Tennakoon, Chandani, Sagoe-Crentsil, Kwesi and Sanjayan, Jay G.. (2015). Influence and role of feedstock Si and Al content in geopolymer synthesis. Journal of Sustainable Cement-Based Materials. 4(2), pp. 129 - 139. https://doi.org/10.1080/21650373.2014.979264
Alkali-activated binders: Early age nucleation reactions, chemical phase evolution and their implications on system properties
Sagoe-Crentsil, Kwesi and De Silva, Premalatha. (2015). Alkali-activated binders: Early age nucleation reactions, chemical phase evolution and their implications on system properties. Journal of the Chinese Ceramic Society. 43(10), pp. 1449 - 1457. https://doi.org/10.14062/j.issn.0454-5648.2015.10.15
Effect of high-speed mixing on properties of high calcium fly ash geopolymer paste
Chindaprasirt, Prinya, De Silva, Premalatha and Hanjitsuwan, Sakonwan. (2014). Effect of high-speed mixing on properties of high calcium fly ash geopolymer paste. Arabian Journal for Science and Engineering Section B : Engineering. 39(8), pp. 6001 - 6007. https://doi.org/10.1007/s13369-014-1217-1
Design and development of Alkali Pozzolan Cement (APC)
Kulasuriya, Chandana, Vimonsatit, Vanissorn, Dias, W. P. S. and De Silva, Premalatha. (2014). Design and development of Alkali Pozzolan Cement (APC). Construction and Building Materials. 68, pp. 426 - 433. https://doi.org/10.1016/j.conbuildmat.2014.06.095
Effect of speed and time of mixing on setting time and strength of high calcium fly ash geopolymer
Hanjisuwan, Sakonwan, De Silva, Premalatha and Chinderprasirt, Prinya. (2012). Effect of speed and time of mixing on setting time and strength of high calcium fly ash geopolymer. The 4th KKU International Engineering Conference. Thailand: Khon Kaen University. pp. 18 - 21
Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems
Chindaprasirt, Prinya, De Silva, Premalatha, Sagoe-Crenstil, Kwesi and Hanjisuwan, Sakonwan. (2012). Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. Journal of Materials Science. 47(4876), pp. 4876 - 4883. https://doi.org/10.1007/s10853-012-6353-y
Academic Guided Peer Support for Struggling First Year Students
Robinson, Kathy, Ballard, Fiona, De Silva, Pre, Hendrick, Lynne, MacGibbon, Mary, Mehta, Hemant and Rouf, Abdur. (2010). Academic Guided Peer Support for Struggling First Year Students. In In N. Riseman, S. Rechter and E. Warne (Ed.). Learning, teaching and social justice in higher education pp. 189 - 176 University of Melbourne eScholarship Research Centre....
Chemical, microstructural and strength development of calcium and magnesium carbonate binders
De Silva, Premalatha, Bucea, L. and Sirivivatnanon, V.. (2009). Chemical, microstructural and strength development of calcium and magnesium carbonate binders. Cement and Concrete Research. 39(5), pp. 460 - 465. https://doi.org/10.1016/j.cemconres.2009.02.003
The role of Al2O3, SiO2 and Na2O on the amorphous -> Crystalline phase transformation in geopolymer systems
De Silva, Premalatha and Sagoe-Crenstil, Kwesi. (2009). The role of Al2O3, SiO2 and Na2O on the amorphous -> Crystalline phase transformation in geopolymer systems. Journal of Australian Ceramic Society. 45(1), pp. 63 - 71.
The effect of ai203 and si02 on setting and hardening of na20-ai203-si02-h20 geopolymer systems
De Silva, Pre and Sagoe-Crenstil, Kwesi. (2008). The effect of ai203 and si02 on setting and hardening of na20-ai203-si02-h20 geopolymer systems. Journal of the Australian Ceramic Society. 44(1), pp. 39 - 46.
Medium phase stability of na20-ai203-si02-h20 geopolymer systems
De Silva, Pre and Sagoe-Crenstil, Kwesi. (2008). Medium phase stability of na20-ai203-si02-h20 geopolymer systems. Cement and Concrete Research. 38(6), pp. 870 - 876. https://doi.org/10.1016/j.cemconres.2007.10.003
Kinetics of geopolymerization: Role of al2o3 and sio2
De Silva, Pre, Sagoe-Crenstil, Kwesi and Sirivivatnanon, V.. (2007). Kinetics of geopolymerization: Role of al2o3 and sio2. Cement and Concrete Research. 37(4), pp. 512 - 518. https://doi.org/10.1016/j.cemconres.2007.01.003
Carbonate binders: Reaction kinetics, strength and microstructure
De Silva, Pre, Bucea, L., Moorehead, David and Sirivivatnanon, V.. (2006). Carbonate binders: Reaction kinetics, strength and microstructure. Cement and Concrete Composites. 28(7), pp. 613 - 620. https://doi.org/10.1016/j.cemconcomp.2006.03.004