Intermittent reloading does not prevent reduction in iron availability and hepcidin upregulation caused by hindlimb unloading

Journal article


Nay, Kévin, Martin, David, Orfila, Luz, Saligaut, Dany, Martin, Brice, Horeau, Mathieu, Cavey, Thibaut, Kenawi, Moussa, Island, Marie-Laure, Ropert, Martine, Loréal, Olivier, Koechlin-Ramonatxo, Christelle and Derbré, Frédéric. (2021). Intermittent reloading does not prevent reduction in iron availability and hepcidin upregulation caused by hindlimb unloading. Experimental Physiology. 106(1), pp. 28-36. https://doi.org/10.1113/EP088339
AuthorsNay, Kévin, Martin, David, Orfila, Luz, Saligaut, Dany, Martin, Brice, Horeau, Mathieu, Cavey, Thibaut, Kenawi, Moussa, Island, Marie-Laure, Ropert, Martine, Loréal, Olivier, Koechlin-Ramonatxo, Christelle and Derbré, Frédéric
Abstract

In humans, exposure to microgravity during spaceflight causes muscle atrophy, changes in iron storage and a reduction in iron availability. We previously observed that during 7 days of simulated microgravity in rats, hepcidin plays a key role in iron misdistribution, and we suggested that a crosstalk between skeletal muscle and liver could regulate hepcidin synthesis in this context. In the present study in rats, we investigated the medium-term effects of simulated microgravity on iron metabolism. We also tested whether intermittent reloading (IR) to target skeletal muscle atrophy limits iron misdistribution efficiently. For this purpose, Wistar rats underwent 14 days of hindlimb unloading (HU) combined or not combined with daily IR. At the end of this period, the serum iron concentration and transferrin saturation were significantly reduced, whereas hepatic hepcidin mRNA was upregulated. However, the main signalling pathways involved in hepcidin synthesis in the liver (BMP–small mothers against decapentaplegic (SMAD), interleukin-6–STAT3 and ERK1/2) were unaffected. Unlike what was observed after 7 days of HU, the iron concentration in the spleen, liver and skeletal muscle was comparable between control animals and those that underwent HU or HU plus IR for 14 days. Despite its beneficial effect on soleus muscle atrophy and slow-to-fast myosin heavy chain distribution, IR did not significantly prevent a reduction in iron availability and hepcidin upregulation. Altogether, these results highlight that iron availability is durably reduced during longer exposure to simulated microgravity and that the related hepcidin upregulation is not a transient adaptation to these conditions. The results also suggest that skeletal muscle does not necessarily play a key role in the iron misdistribution that occurs during simulated microgravity.

Keywordscrosstalk; disuse; iron overload; myosin heavy chain; physical inactivity
Year2021
JournalExperimental Physiology
Journal citation106 (1), pp. 28-36
PublisherBlackwell Publishing Ltd
ISSN0958-0670
Digital Object Identifier (DOI)https://doi.org/10.1113/EP088339
Scopus EID2-s2.0-85085512240
Research or scholarlyResearch
Page range28-36
Publisher's version
License
All rights reserved
File Access Level
Controlled
Output statusPublished
Publication dates
Online13 Apr 2020
Publication process dates
Accepted09 Apr 2020
Deposited28 Jun 2021
Permalink -

https://acuresearchbank.acu.edu.au/item/8w476/intermittent-reloading-does-not-prevent-reduction-in-iron-availability-and-hepcidin-upregulation-caused-by-hindlimb-unloading

Restricted files

Publisher's version

  • 71
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

SGC-CAMKK2-1 : A chemical probe for CAMKK2
Wells, Carrow, Liang, Yi, Pulliam, Thomas L., Lin, Chenchu, Awad, Dominik, Eduful, Benjamin, O’Byrne, Sean, Hossain, Mohammad Anwar, Catta-Preta, Carolina Moura Costa, Ramos, Priscila Zonzini, Gileadi, Opher, Gileadi, Carina, Couñago, Rafael M., Stork, Brittany, Langendorf, Christopher G., Nay, Kevin, Oakhill, Jonathan S., Mukherjee, Debarati, Racioppi, Luigi, ... Drewry, David H.. (2023). SGC-CAMKK2-1 : A chemical probe for CAMKK2. Cells. 12(2), p. Article 287. https://doi.org/10.3390/cells12020287
Oxidative and glycolytic skeletal muscles deploy protective mechanisms to avoid atrophy under pathophysiological iron overload
Martin, David, Nay, Kévin, Robin, François, Rebillard, Amélie, Orfila, Luz, Martin, Brice, Leroyer, Patricia, Guggenbuhl, Pascal, Dufresne, Suzanne, Noirez, Philippe, Ropert, Martine, Loréal, Olivier and Derbré, Frédéric. (2022). Oxidative and glycolytic skeletal muscles deploy protective mechanisms to avoid atrophy under pathophysiological iron overload. Journal of Cachexia, Sarcopenia and Muscle. 13(2), pp. 1250-1261. https://doi.org/10.1002/jcsm.12897
Molecular mechanisms underlying the beneficial effects of exercise on brain function and neurological disorders
Nay, Kévin, Smiles, William J., Kaiser, Jacqueline, McAloon, Luke M., Loh, Kim, Galic, Sandra, Oakhill, Jonathan S., Gundlach, Andrew L. and Scott, John W.. (2021). Molecular mechanisms underlying the beneficial effects of exercise on brain function and neurological disorders. International Journal of Molecular Sciences. 22, p. Article 4052. https://doi.org/10.3390/ijms22084052
Does physical inactivity induce significant changes in human gut microbiota? New answers using the dry immersion hypoactivity model
Jollet, Maxence, Nay, Kevin, Chopard, Angele, Bareille, Marie-Pierre, Beck, Arnaud, Ollendorff, Vincent, Vernus, Barbara, Bonnieu, Anne, Mariadassou, Mahendra, Rué, Olivier, Derbré, Frédéric, Goustard, Bénédicte and Koechlin-Ramonatxo, Christelle. (2021). Does physical inactivity induce significant changes in human gut microbiota? New answers using the dry immersion hypoactivity model. Nutrients. 13(11), p. Article 3865. https://doi.org/10.3390/nu13113865
Hinge binder scaffold hopping identifies potent calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) inhibitor chemotypes
Eduful, Benjamin J., O'Byrne, Sean N., Temme, Louisa, Asquith, Christopher R. M., Liang, Yi, Picado, Alfredo, Pilotte, Joseph R., Hossain, Mohammad Anwar, Wells, Carrow I., Zuercher, William J., Catta-Preta, Carolina M.C, Ramos, Priscila, de S. Santiago, André, Counago, Rafael M., Langendorf, Christopher G., Nay, Kevin, Oakhill, Jonathan S., Pulliam, Thomas L., Lin, Chenchu, ... Drewry, David H.. (2021). Hinge binder scaffold hopping identifies potent calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) inhibitor chemotypes. Journal of Medicinal Chemistry. 64(15), pp. 10849-10877. https://doi.org/10.1021/acs.jmedchem.0c02274
Simulated microgravity disturbs iron metabolism and distribution in humans : Lessons from dry immersion, an innovative ground-based human model
Nay, Kévin, Koechlin-Ramonatxo, Christelle, Rochdi, Sarah, Island, Marie-Laure, Orfila, Luz, Treffel, Loïc, Bareille, Marie-Pierre, Beck, Arnaud, Gauquelin-Koch, Guillemette, Ropert, Martine, Loréal, Olivier and Derbré, Frédéric. (2020). Simulated microgravity disturbs iron metabolism and distribution in humans : Lessons from dry immersion, an innovative ground-based human model. The FASEB Journal. 34(11), pp. 14920-14929. https://doi.org/10.1096/fj.202001199RR
Gut bacteria are critical for optimal muscle function: A potential link with glucose homeostasis
Nay, Kevin, Jollet, Maxence, Goustard, Benedicte, Baati, Narjes, Vernus, Barbara, Pontones, Maria, Lefeuvre-Orfila, Luz, Bendavid, Claude, Rué, Olivier, Mariadassou, Mahendra, Bonnieu, Anne, Ollendorff, Vincent, Lepage, Patricia, Derbré, Frédéric and Koechlin-Ramonatxo, Christelle. (2019). Gut bacteria are critical for optimal muscle function: A potential link with glucose homeostasis. American Journal of Physiology - Endocrinology and Metabolism. 317(1), pp. 158 - 171. https://doi.org/10.1152/ajpendo.00521.2018
Skeletal muscle ceramides do not contribute to physical-inactivity-induced insulin resistance
Appriou, Zéphyra, Nay, Kevin, Pierre, Nicolas, Saligaut, Dany, Lefeuvre-Orfila, Luz, Martin, Brice, Cavey, Thibault, Ropert, Martine, Loréal, Olivier, Rannou-Bekono, Françoise and Derbré, Frédéric. (2019). Skeletal muscle ceramides do not contribute to physical-inactivity-induced insulin resistance. Applied Physiology, Nutrition and Metabolism. 44(11), pp. 1180 - 1188. https://doi.org/10.1139/apnm-2018-0850
Ceruloplasmin deficiency does not induce macrophagic iron overload: Lessons from a new rat model of hereditary aceruloplasminemia
Kenawi, Moussa, Rouger, Emmanuel, Island, Marie-Laure, Leroyer, Patricia, Robin, François, Rémy, Séverine, Tesson, Laurent, Anegon, Ignacio, Nay, Kevin, Derbré, Frédéric, Brissot, Pierre, Ropert, Martine, Cavey, Thibault and Loréal, Olivier. (2019). Ceruloplasmin deficiency does not induce macrophagic iron overload: Lessons from a new rat model of hereditary aceruloplasminemia. The FASEB Journal. 33(12), pp. 13492 - 13502. https://doi.org/10.1096/fj.201901106R
Mitochondrial MDM2 regulates respiratory complex i activity independently of p53
Arena, Giuseppe, Cissé, Madi Yann, Pyrdziak, Samuel, Chatre, Laurent, Riscal, Romain, Fuentes, Maryse, Arnold, Jamie Jon, Kastner, Markus, Gayte, Laurie, Bertrand-Gaday, Christelle, Nay, Kevin, Angebault-Prouteau, Claire, Murray, Kerren, Chabi, Beatrice, Koechlin-Ramonatxo, Christelle, Orsetti, Béatrice, Vincent, Charles, Casas, François, Marine, Jean-Christophe, ... Le Cam, Laurent. (2018). Mitochondrial MDM2 regulates respiratory complex i activity independently of p53. Molecular Cell. 69(4), pp. 594 - 609. https://doi.org/10.1016/j.molcel.2018.01.023