A human-in-the-loop probabilistic CNN-fuzzy logic framework for accident prediction in vehicular networks
Journal article
Usman, Muhammad, Carie, Anil, Marapelli, Bhaskar, Bedru, Hayat Dino and Biswas, Kamanashis. (2021). A human-in-the-loop probabilistic CNN-fuzzy logic framework for accident prediction in vehicular networks. IEEE Sensors Journal. 21(14), pp. 15496-15503. https://doi.org/10.1109/JSEN.2020.3023661
Authors | Usman, Muhammad, Carie, Anil, Marapelli, Bhaskar, Bedru, Hayat Dino and Biswas, Kamanashis |
---|---|
Abstract | The vehicle accident prediction methods are designed to improve the vehicular safety and reduce the rescue response time in the case of an accident. The existing accident prediction methods, however, do not involve Human-in-the-Loop, i.e., do not consider the emotional state of a driver to predict the likelihood of an accident. We propose a Probabilistic Convolutional Neural Network (CNN)-Fuzzy Logic framework that involves Human-in-the-Loop and takes into account the multiple input streams of sensor generated data, i.e., human emotions and traffic data. The features extracted from the CNN model are fed to our designed probabilistic graph-based inference model to determine the accident probability. The probability is then mapped with accident severity through fuzzy membership functions for accident prediction. The experiment results show the promising performance of our proposed framework, i.e., 93.1% accuracy of face expressions, 76.2% accuracy of heartbeat, and 76.9% accuracy of traffic inputs and predicts the accident likelihood with 90% accuracy. The comparison, with related works, shows that the proposed framework can predict accidents with higher probabilities. |
Keywords | accident prediction; convolution neural network; deep learning; fuzzy logic; human-in-the-loop |
Year | 2021 |
Journal | IEEE Sensors Journal |
Journal citation | 21 (14), pp. 15496-15503 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISSN | 1530-437X |
Digital Object Identifier (DOI) | https://doi.org/10.1109/JSEN.2020.3023661 |
Scopus EID | 2-s2.0-85110598970 |
Research or scholarly | Research |
Page range | 15496-15503 |
Publisher's version | License All rights reserved File Access Level Controlled |
Output status | Published |
Publication dates | |
Online | 11 Sep 2020 |
Publication process dates | |
Accepted | 03 Sep 2020 |
Deposited | 04 Jul 2022 |
https://acuresearchbank.acu.edu.au/item/8xz84/a-human-in-the-loop-probabilistic-cnn-fuzzy-logic-framework-for-accident-prediction-in-vehicular-networks
Restricted files
Publisher's version
220
total views0
total downloads130
views this month0
downloads this month