Musculoskeletal loading in the symptomatic and asymptomatic knees of middle-aged osteoarthritis patients

Journal article


Sritharan, Prasanna, Lin, Yi-Chung, Richardson, Sara E., Crossley, Kay M., Birmingham, Trevor B. and Pandy, Marcus G.. (2017). Musculoskeletal loading in the symptomatic and asymptomatic knees of middle-aged osteoarthritis patients. Journal of Orthopaedic Research. 35(2), pp. 321-330. https://doi.org/10.1002/jor.23264
AuthorsSritharan, Prasanna, Lin, Yi-Chung, Richardson, Sara E., Crossley, Kay M., Birmingham, Trevor B. and Pandy, Marcus G.
Abstract

This study quantified the contributions by muscles, gravity, and inertia to the tibiofemoral compartment forces in the symptomatic (SYM) and asymptomatic (ASYM) limbs of varus mal-aligned medial knee osteoarthritis (OA) patients, and compared the results with healthy controls (CON). Muscle forces and tibiofemoral compartment loads were calculated using gait data from 39 OA patients and 15 controls aged 49 ± 7 years. Patients exhibited lower knee flexion angle, higher hip abduction, and knee adduction angles, lower internal knee flexion torque but higher external knee adduction moment. Muscle forces were highest in CON except hamstrings, which was highest in SYM. ASYM muscle forces were lowest for biceps femoris short head and gastrocnemius but otherwise intermediate between SYM and CON. In all subjects, vasti, hamstrings, gastrocnemius, soleus, gluteus medius, gluteus maximus, and gravity were the largest contributors to medial compartment force (MCF). Inertial contributions were negligible. Highest MCF was found in SYM throughout stance. Small increases in contributions from hamstrings, gluteus maximus, gastrocnemius, and gravity at the first peak; soleus and rectus femoris at the second peak; and soleus, gluteus maximus, gluteus medius, and gravity during mid-stance summed to produce significantly higher total MCF. Compared to CON, the ASYM limb exhibited similar peak MCF but higher mid-stance MCF. In patients, diminished non-knee-spanning muscle forces did not produce correspondingly diminished MCF contributions due to the influence of mal-alignment. Our findings emphasize consideration of muscle function, lower-limb alignment, and mid-stance loads in developing interventions for OA, and inclusion of the asymptomatic limb in clinical assessments. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:321–330, 2017.

Keywordsknee adduction moment; medial compartment force; varus alignment; musculoskeletal model; muscle contributions
Year2017
JournalJournal of Orthopaedic Research
Journal citation35 (2), pp. 321-330
PublisherWiley Periodicals
ISSN0736-0266
Digital Object Identifier (DOI)https://doi.org/10.1002/jor.23264
Scopus EID2-s2.0-84964961759
Research or scholarlyResearch
Page range321-330
FunderAustralian Research Council (ARC)
Victorian Endowment for Science, Knowledge, and Innovation (VESKI)
Canadian Institutes of Health Research
The Arthritis Society of Canada
Canada Research Chairs Program
Publisher's version
License
All rights reserved
File Access Level
Controlled
Output statusPublished
Publication dates
Online04 May 2016
Publication process dates
Accepted08 Apr 2016
Deposited17 Aug 2022
ARC Funded ResearchThis output has been funded, wholly or partially, under the Australian Research Council Act 2001
Grant IDDP120101973
Permalink -

https://acuresearchbank.acu.edu.au/item/8y1wz/musculoskeletal-loading-in-the-symptomatic-and-asymptomatic-knees-of-middle-aged-osteoarthritis-patients

Restricted files

Publisher's version

  • 66
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Validity of Inertial Measurement Units to Measure Lower-Limb Kinematics and Pelvic Orientation at Submaximal and Maximal Effort Running Speeds
Lin, Yi-Chung, Price, Kara, Carmichael, Declan, Maniar, Nirav, Hickey, Jack Thomas, Timmins, Ryan Gregory, Heiderscheit, Bryan C., Blemker, Silvia S. and Opar, David. (2023). Validity of Inertial Measurement Units to Measure Lower-Limb Kinematics and Pelvic Orientation at Submaximal and Maximal Effort Running Speeds. Sensors. 23(23), pp. 1-16. https://doi.org/10.3390/s23239599
Influence of muscle loading on early-stage bone fracture healing
Miramini, Saeed, Ganadhiepan, Ganesharajah, Lin, Yi-Chung, Patel, Minoo, Richardson, Martin, Pandy, Marcus and Zhang, Lihai. (2023). Influence of muscle loading on early-stage bone fracture healing. Journal of the Mechanical Behavior of Biomedical Materials. 138, p. Article 105621. https://doi.org/10.1016/j.jmbbm.2022.105621
The development of a HAMstring InjuRy (HAMIR) index to mitigate injury risk through innovative imaging, biomechanics, and data analytics : Protocol for an observational cohort study
Heiderscheit, Bryan C., Blemker, Silvia S., Opar, David, Stiffler-Joachim, Mikel R., Bedi, Asheesh, Hart, Joseph, Mortensen, Brett, Kliethermes, Stephanie A., Baer, Geoffrey, Buckley, Craig, Costigan, Kyle, Drew, Shauna, Eberhardt, Duffy, Fabian, Kurrel, Feller, Herman, Hammer, Erin, Heidt, Danielle, Lee, Kenneth, Lund, Brian, ... Sund, Sarah. (2022). The development of a HAMstring InjuRy (HAMIR) index to mitigate injury risk through innovative imaging, biomechanics, and data analytics : Protocol for an observational cohort study. BMC Sports Science, Medicine and Rehabilitation. 14(1), p. Article 128. https://doi.org/10.1186/s13102-022-00520-3
Lower-limb muscle function in healthy young and older adults across a range of walking speeds
Lim, Yoong Ping, Lin, Yi-Chung and Pandy, Marcus G.. (2022). Lower-limb muscle function in healthy young and older adults across a range of walking speeds. Gait & Posture. 94, pp. 124-130. https://doi.org/10.1016/j.gaitpost.2022.03.003
Predictive simulations of human sprinting : Effects of muscle-tendon properties on sprint performance
Lin, Yi-Chung and Pandy, Marcus G.. (2022). Predictive simulations of human sprinting : Effects of muscle-tendon properties on sprint performance. Medicine and Science in Sports and Exercise. 54(11), pp. 1961-1972. https://doi.org/10.1249/MSS.0000000000002978
How muscles aperformance in accelerated sprinting
Pandy, Marcus G., Lai, Adrian K. M., Schache, Anthony and Lin, Yi-Chung. (2021). How muscles aperformance in accelerated sprinting. Scandinavian Journal of Medicine & Science in Sports. 31(10), pp. 1882-1896. https://doi.org/10.1111/sms.14021
A generic musculoskeletal model of the juvenile lower limb for biomechanical analyses of gait
Hainisch, Reinhard, Kranzl, Andreas, Lin, Yi-Chung, Pandy, Marcus and Gfoehler, Margit. (2021). A generic musculoskeletal model of the juvenile lower limb for biomechanical analyses of gait. Computer Methods in Biomechanics and Biomedical Engineering. 24(4), pp. 349-357. https://doi.org/10.1080/10255842.2020.1817405
Load distribution at the patellofemoral joint during walking
Thomeer, Lucas T., Lin, Yi-Chung and Pandy, Marcus G.. (2020). Load distribution at the patellofemoral joint during walking. Annals of Biomedical Engineering. 48(12), pp. 2821-2835. https://doi.org/10.1007/s10439-020-02672-0
Direct validation of model-predicted muscle forces in the cat hindlimb during locomotion
Karabulut, Derya, Dogru, Suzan Cansel, Lin, Yi-Chung, Pandy, Marcus G., Herzog, Walter and Arslan, Yunus Ziya. (2020). Direct validation of model-predicted muscle forces in the cat hindlimb during locomotion. Journal of Biomechanical Engineering. 142(5), pp. 1-13. https://doi.org/10.1115/1.4045660
Lower-limb muscle function during gait in varus mal-aligned osteoarthritis patients
Sritharan, Prasanna, Lin, Yi-Chung, Richardson, Sara E., Crossley, Kay M., Birmingham, Trevor B. and Pandy, Marcus G.. (2018). Lower-limb muscle function during gait in varus mal-aligned osteoarthritis patients. Journal of Orthopaedic Research. 36(8), pp. 2157-2166. https://doi.org/10.1002/jor.23883
Is running better than walking for reducing hip joint loads?
Schache, Anthony G., Lin, Yi-Chung, Crossley, Kay M. and Pandy, Marcus G.. (2018). Is running better than walking for reducing hip joint loads? Medicine and Science in Sports and Exercise. 50(11), pp. 2301-2310. https://doi.org/10.1249/MSS.0000000000001689
Predictive simulations of neuromuscular coordination and joint-contact loading in human gait
Lin, Yi-Chung, Walter, Jonathan P. and Pandy, Marcus G.. (2018). Predictive simulations of neuromuscular coordination and joint-contact loading in human gait. Annals of Biomedical Engineering. 46(8), pp. 1216-1227. https://doi.org/10.1007/s10439-018-2026-6
Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation
Lin, Yi-Chung and Pandy, Marcus. (2017). Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation. Journal of Biomechanics. 59, pp. 1-8. https://doi.org/10.1016/j.jbiomech.2017.04.038
Effects of step length and step frequency on lower-limb muscle function in human gait
Lim, Yoong Ping, Lin, Yi-Chung and Pandy, Marcus G.. (2017). Effects of step length and step frequency on lower-limb muscle function in human gait. Journal of Biomechanics. 57, pp. 1-7. https://doi.org/10.1016/j.jbiomech.2017.03.004
Direct methods for predicting movement biomechanics based upon optimal control theory with implementation in OpenSim
Porsa, Sina, Lin, Yi-Chung and Pandy, Marcus. (2016). Direct methods for predicting movement biomechanics based upon optimal control theory with implementation in OpenSim. Annals of Biomedical Engineering. 44(8), pp. 2542-2557. https://doi.org/10.1007/s10439-015-1538-6
In vivo behavior of the human soleus muscle with increasing walking and running speeds
Lai, Adrian K. M., Lichtwark, Glen A., Schache, Anthony, Lin, Yi-Chung, Brown, Nicholas A. T. and Pandy, Marcus. (2015). In vivo behavior of the human soleus muscle with increasing walking and running speeds. Journal of Applied Physiology. 118(10), pp. 1266-1275. https://doi.org/10.1152/japplphysiol.00128.2015
Muscle coordination of support, progression and balance during stair ambulation
Lin, Yi-Chung, Fok, Laurence, Schache, Anthony and Pandy, Marcus. (2015). Muscle coordination of support, progression and balance during stair ambulation. Journal of Biomechanics. 48(2), pp. 340-347. https://doi.org/10.1016/j.jbiomech.2014.11.019
Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed
Lai, Adrian K. M., Schache, Anthony, Lin, Yi-Chung and Pandy, Marcus. (2014). Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed. The Journal of Experimental Biology. 217(17), pp. 3159-3168. https://doi.org/10.1242/jeb.100826
Quantitative evaluation of the major determinants of human gait
Lin, Yi-Chung, Gfoehler, Margit and Pandy, Marcus. (2014). Quantitative evaluation of the major determinants of human gait. Journal of Biomechanics. 47(6), pp. 1324-1331. https://doi.org/10.1016/j.jbiomech.2014.02.002