Is running better than walking for reducing hip joint loads?

Journal article


Schache, Anthony G., Lin, Yi-Chung, Crossley, Kay M. and Pandy, Marcus G.. (2018). Is running better than walking for reducing hip joint loads? Medicine and Science in Sports and Exercise. 50(11), pp. 2301-2310. https://doi.org/10.1249/MSS.0000000000001689
AuthorsSchache, Anthony G., Lin, Yi-Chung, Crossley, Kay M. and Pandy, Marcus G.
Abstract

Purpose
Knowledge of hip biomechanics during locomotion is necessary for designing optimal rehabilitation programs for hip-related conditions. The purpose of this study was to: 1) determine how lower-limb muscle contributions to the hip contact force (HCF) differed between walking and running; and 2) compare both absolute and per-unit-distance (PUD) loads at the hip during walking and running.

Methods
Kinematic and ground reaction force data were captured from eight healthy participants during overground walking and running at various steady-state speeds (walking: 1.50 ± 0.11 m·s−1 and 1.98 ± 0.03 m·s−1; running: 2.15 ± 0.18 m·s−1 and 3.47 ± 0.11 m·s−1). A three-dimensional musculoskeletal model was used to calculate the HCF as well as lower-limb muscular contributions to the HCF in each direction (posterior–anterior; inferior–superior; lateral–medial). The impulse of the resultant HCF was calculated as well as the PUD impulse (BW·s·m−1) and PUD force (BW·m−1).

Results
For both walking and running, HCF magnitude was greater during stance than swing and was largest in the inferior–superior direction and smallest in the posterior–anterior direction. Gluteus medius, iliopsoas, and gluteus maximus generated the largest contributions to the HCF during stance, whereas iliopsoas and hamstrings generated the largest contributions during swing. When comparing all locomotion conditions, the impulse of the resultant HCF was smallest for running at 2.15 m·s−1 with an average magnitude of 2.14 ± 0.31 BW·s, whereas the PUD impulse and force were smallest for running at 3.47 m·s−1 with average magnitudes of 0.95 ± 0.18 BW·s·m−1 and 1.25 ± 0.24 BW·m−1, respectively.

Conclusions
Hip PUD loads were lower for running at 3.47 m·s−1 compared with all other locomotion conditions because of a greater distance travelled per stride (PUD impulse) or a shorter stride duration combined with a greater distance travelled per stride (PUD force).

Keywordsbiomechanics; musculoskeletal model; contact force; impulse; per-unit-distance load
Year2018
JournalMedicine and Science in Sports and Exercise
Journal citation50 (11), pp. 2301-2310
PublisherLippincott Williams and Wilkins
ISSN0195-9131
Digital Object Identifier (DOI)https://doi.org/10.1249/MSS.0000000000001689
Scopus EID2-s2.0-85054963674
Research or scholarlyResearch
Page range2301-2310
FunderAustralian Research Council
Publisher's version
License
All rights reserved
File Access Level
Controlled
Output statusPublished
Publication dates
OnlineNov 2018
Publication process dates
AcceptedJun 2018
Deposited19 Aug 2022
ARC Funded ResearchThis output has been funded, wholly or partially, under the Australian Research Council Act 2001
Grant IDLP110100262
Permalink -

https://acuresearchbank.acu.edu.au/item/8y22w/is-running-better-than-walking-for-reducing-hip-joint-loads

Restricted files

Publisher's version

  • 10
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

A generic musculoskeletal model of the juvenile lower limb for biomechanical analyses of gait
Hainisch, Reinhard, Kranzl, Andreas, Lin, Yi-Chung, Pandy, Marcus and Gfoehler, Margit. (2021). A generic musculoskeletal model of the juvenile lower limb for biomechanical analyses of gait. Computer Methods in Biomechanics and Biomedical Engineering. 24(4), pp. 349-357. https://doi.org/10.1080/10255842.2020.1817405
Load distribution at the patellofemoral joint during walking
Thomeer, Lucas T., Lin, Yi-Chung and Pandy, Marcus G.. (2020). Load distribution at the patellofemoral joint during walking. Annals of Biomedical Engineering. 48(12), pp. 2821-2835. https://doi.org/10.1007/s10439-020-02672-0
Direct validation of model-predicted muscle forces in the cat hindlimb during locomotion
Karabulut, Derya, Dogru, Suzan Cansel, Lin, Yi-Chung, Pandy, Marcus G., Herzog, Walter and Arslan, Yunus Ziya. (2020). Direct validation of model-predicted muscle forces in the cat hindlimb during locomotion. Journal of Biomechanical Engineering. 142(5), pp. 1-13. https://doi.org/10.1115/1.4045660
Lower-limb muscle function during gait in varus mal-aligned osteoarthritis patients
Sritharan, Prasanna, Lin, Yi-Chung, Richardson, Sara E., Crossley, Kay M., Birmingham, Trevor B. and Pandy, Marcus G.. (2018). Lower-limb muscle function during gait in varus mal-aligned osteoarthritis patients. Journal of Orthopaedic Research. 36(8), pp. 2157-2166. https://doi.org/10.1002/jor.23883
Predictive simulations of neuromuscular coordination and joint-contact loading in human gait
Lin, Yi-Chung, Walter, Jonathan P. and Pandy, Marcus G.. (2018). Predictive simulations of neuromuscular coordination and joint-contact loading in human gait. Annals of Biomedical Engineering. 46(8), pp. 1216-1227. https://doi.org/10.1007/s10439-018-2026-6
Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation
Lin, Yi-Chung and Pandy, Marcus. (2017). Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation. Journal of Biomechanics. 59, pp. 1-8. https://doi.org/10.1016/j.jbiomech.2017.04.038
Effects of step length and step frequency on lower-limb muscle function in human gait
Lim, Yoong Ping, Lin, Yi-Chung and Pandy, Marcus G.. (2017). Effects of step length and step frequency on lower-limb muscle function in human gait. Journal of Biomechanics. 57, pp. 1-7. https://doi.org/10.1016/j.jbiomech.2017.03.004
Musculoskeletal loading in the symptomatic and asymptomatic knees of middle-aged osteoarthritis patients
Sritharan, Prasanna, Lin, Yi-Chung, Richardson, Sara E., Crossley, Kay M., Birmingham, Trevor B. and Pandy, Marcus G.. (2017). Musculoskeletal loading in the symptomatic and asymptomatic knees of middle-aged osteoarthritis patients. Journal of Orthopaedic Research. 35(2), pp. 321-330. https://doi.org/10.1002/jor.23264
Direct methods for predicting movement biomechanics based upon optimal control theory with implementation in OpenSim
Porsa, Sina, Lin, Yi-Chung and Pandy, Marcus. (2016). Direct methods for predicting movement biomechanics based upon optimal control theory with implementation in OpenSim. Annals of Biomedical Engineering. 44(8), pp. 2542-2557. https://doi.org/10.1007/s10439-015-1538-6