Exact algorithms for energy-efficient virtual machine placement in data centers

Journal article


Wei, Chen, Hu, Zhi-Hua and Wang, You-Gan. (2020). Exact algorithms for energy-efficient virtual machine placement in data centers. Future Generation Computer Systems. 106, pp. 77-91. https://doi.org/10.1016/j.future.2019.12.043
AuthorsWei, Chen, Hu, Zhi-Hua and Wang, You-Gan
Abstract

Virtual machine placement (VMP) and power management are essential topics in the development of cloud computing and data centers. The assignment of a virtual machine to physical machine impacts the energy consumption, the makespan, and the idle time of physical machines. In this paper, we formulate the problem as a three-dimension bin-packing optimization to minimize the energy cost of working machines and idle machines. By considering the CPU and memory requirements from a virtual machine, the assignment is constrained under the capacities of the physical machine. Inspired by the best-fit decreasing algorithm, four variants of this exact algorithm are developed to address the multiple-objective problem under multiple-capacity constraints. Experimental results demonstrate the effectiveness of the proposed algorithms on small-, medium- and large-scale instances profiled from data centers. The results indicate that the algorithms assigning virtual machines to the physical machines of best-fit hosting time is competitive in cases with loose capacity constraints, and the energy-efficiency best-fit algorithm produces efficient assignments when a makespan limit is required on the physical machines. The algorithm combining the fit rules has a linear computing time concerning the numbers of physical and virtual machines, and a stable performance that obtains gaps of results lower than 5.8% compared to an on-the-shelf mixed-integer linear program solver.

KeywordsVirtual machine placement; Data center; Computational service supply chain; Bin packing problem; First-fit algorithm
Year01 Jan 2020
JournalFuture Generation Computer Systems
Journal citation106, pp. 77-91
PublisherElsevier B.V.
ISSN0167-739X
Digital Object Identifier (DOI)https://doi.org/10.1016/j.future.2019.12.043
Web address (URL)https://www.sciencedirect.com/science/article/pii/S0167739X19319594
Open accessPublished as non-open access
Research or scholarlyResearch
Page range77-91
Publisher's version
License
All rights reserved
File Access Level
Controlled
Output statusPublished
Publication dates
Print08 Jan 2020
Publication process dates
Accepted27 Dec 2019
Deposited13 Jan 2023
Additional information

© 2020 Elsevier B.V. All rights reserved.

Place of publicationNetherlands
Permalink -

https://acuresearchbank.acu.edu.au/item/8y93y/exact-algorithms-for-energy-efficient-virtual-machine-placement-in-data-centers

Restricted files

Publisher's version

  • 2
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Energy-efficient virtual machine placement in data centres via an accelerated Genetic Algorithm with improved fitness computation
Hormozi, Elham, Hu, Shuwen, Ding, Zhe, Tian, Yu-Chu, Wang, You-Gan, Yu, Zu-Guo and Zhang, Weizhe. (2022). Energy-efficient virtual machine placement in data centres via an accelerated Genetic Algorithm with improved fitness computation. Energy. 252, pp. 1-15. https://doi.org/10.1016/j.energy.2022.123884
A physics-informed statistical learning framework for forecasting local suspended sediment concentrations in marine environment
Zhang, Shaotong, Wu, Ryan, Wang, You-Gan, Jeng, Dong-Sheng and Li, Guangxue. (2022). A physics-informed statistical learning framework for forecasting local suspended sediment concentrations in marine environment. Water Research. 218, pp. 1-16. https://doi.org/10.1016/j.watres.2022.118518
Robustified extreme learning machine regression with applications in outlier-blended wind-speed forecasting
Yang, Yang, Zhou, Hu, Wu, Ryan, Ding, Zhe and Wang, You-Gan. (2022). Robustified extreme learning machine regression with applications in outlier-blended wind-speed forecasting. Applied Soft Computing. 122, pp. 1-14. https://doi.org/10.1016/j.asoc.2022.108814
An opposition learning and spiral modelling based arithmetic optimization algorithm for global continuous optimization problems
Yang, Yang, Gao, Yuchao, Tan, Shuang, Zhao, Shangrui, Wu, Jinran, Gao, Shangce, Zhang, Tengfei, Tian, Yu-Chu and Wang, You-Gan. (2022). An opposition learning and spiral modelling based arithmetic optimization algorithm for global continuous optimization problems. Engineering Applications of Artificial Intelligence. 113, p. Article 104981. https://doi.org/10.1016/j.engappai.2022.104981
A modified memetic algorithm with an application to gene selection in a sheep body weight study
Miao, Maoxuan, Wu, Jinran, Cai, Fengjing and Wang, You-Gan. (2022). A modified memetic algorithm with an application to gene selection in a sheep body weight study. Animals. 12(2), p. Article 201. https://doi.org/10.3390/ani12020201
Packing computing servers into the vessel of an underwater data center considering cooling efficiency
Hu, Zhi-Hua, Zheng, Yu-Xin and Wang, You-Gan. (2022). Packing computing servers into the vessel of an underwater data center considering cooling efficiency. Applied Energy. 314, p. Article 118986. https://doi.org/10.1016/j.apenergy.2022.118986
A robust and efficient variable selection method for linear regression
Yang, Zhuoran, Fu, Liya, Wang, You-Gan, Dong, Zhixiong and Jiang, Yunlu. (2021). A robust and efficient variable selection method for linear regression. Journal of Applied Statistics. 49(14), pp. 3677-3692. https://doi.org/10.1080/02664763.2021.1962259
Robust regression with asymmetric loss functions
Fu, Liya and Wang, You-Gan. (2021). Robust regression with asymmetric loss functions. Statistical Methods in Medical Research. 30(8), pp. 1800-1815. https://doi.org/10.1177/09622802211012012
A temporal LASSO regression model for the emergency forecasting of the suspended sediment concentrations in coastal oceans: Accuracy and interpretability
Zhang, Shaotong, Wu, Ryan, Jia, Yonggang, Wang, You-Gan, Zhang, Yaqi and Duan, Qibin. (2021). A temporal LASSO regression model for the emergency forecasting of the suspended sediment concentrations in coastal oceans: Accuracy and interpretability. Engineering Applications of Artificial Intelligence. 100, pp. 1-13. https://doi.org/10.1016/j.engappai.2021.104206
Robust approach for variable selection with high dimensional longitudinal data analysis
Fu, Liya, Li, Jiaqi and Wang, You-Gan. (2021). Robust approach for variable selection with high dimensional longitudinal data analysis. Statistics in Medicine. 40(30), pp. 6835-6854. https://doi.org/10.1002/sim.9213
Efficient and doubly-robust methods for variable selection and parameter estimation in longitudinal data analysis
Fu, Liya, Yang, Zhuoran, Cai, Fengjing and Wang, You-Gan. (2021). Efficient and doubly-robust methods for variable selection and parameter estimation in longitudinal data analysis. Computational Statistics. 36(2), pp. 781-804. https://doi.org/10.1007/s00180-020-01038-3
Predictive regression with p-lags and order-q autoregressive predictors
Jayetileke, Harshanie L., Wang, You-Gan and Zhu, Min. (2021). Predictive regression with p-lags and order-q autoregressive predictors. Journal of Empirical Finance. 62, pp. 282-293. https://doi.org/10.1016/j.jempfin.2021.04.006
An efficient Gehan-type estimation for the accelerated failure time model with clustered and censored data
Fu, Liya, Yang, Zhuoran, Zhou, Yan and Wang, You-Gan. (2021). An efficient Gehan-type estimation for the accelerated failure time model with clustered and censored data. Lifetime Data Analysis. 27(4), pp. 679-709. https://doi.org/10.1007/s10985-021-09526-4
Robust estimation procedure for autoregressive models with heterogeneity
Callens, A., Wang, Y.-G., Fu, L. and Liquet, B.. (2021). Robust estimation procedure for autoregressive models with heterogeneity. Environmental Modeling and Assessment. 26(3), pp. 313-323. https://doi.org/10.1007/s10666-020-09730-w
Influential factors on Chinese airlines’ profitability and forecasting methods
Xu, Xu, McGrory, Clare Anne, Wang, You-Gan and Wu, Jinran. (2021). Influential factors on Chinese airlines’ profitability and forecasting methods. Journal of Air Transport Management. 91, p. Article 101969. https://doi.org/10.1016/j.jairtraman.2020.101969
Support vector regression with asymmetric loss for optimal electric load forecasting
Wu, Ryan, Wang, You-Gan, Tian, Yu-Chu, Burrage, Kevin and Cao, Taoyun. (2021). Support vector regression with asymmetric loss for optimal electric load forecasting. Energy. 223, p. Article 119969. https://doi.org/10.1016/j.energy.2021.119969
A working likelihood approach for robust regression
Fu, Liya, Wang, You-Gan and Cai, Fengjing. (2020). A working likelihood approach for robust regression. Statistical Methods in Medical Research. 29(12), pp. 3641-3652. https://doi.org/10.1177/0962280220936310
Maritime convection and fluctuation between Vietnam and China : A data-driven study
Hu, Zhi-Hua, Liu, Chan-Juan, Chen, Wanting, Wang, You-Gan and Wei, Chen. (2020). Maritime convection and fluctuation between Vietnam and China : A data-driven study. Research in Transportation Business and Management. 34, pp. 1-15. https://doi.org/10.1016/j.rtbm.2019.100414
Identifying barley pan-genome sequence anchors using genetic mapping and machine learning
Gao, Shang, Wu, Ryan, Stiller, Jiri, Zheng, Zhi, Zhou, Meixue, Wang, You-Gan and Liu, Chunji. (2020). Identifying barley pan-genome sequence anchors using genetic mapping and machine learning. Theoretical and Applied Genetics. 133(9), pp. 2535-2544. https://doi.org/10.1007/s00122-020-03615-y
Natural mortality estimation using tree-based ensemble learning models
Liu, Chanjuan, Zhou, Shijie, Wang, You-Gan and Hu, Zhi-Hua. (2020). Natural mortality estimation using tree-based ensemble learning models. ICES Journal of Marine Science. 77(4), pp. 1414-1426. https://doi.org/10.1093/icesjms/fsaa058
Profile-guided three-phase virtual resource management for energy efficiency of data centers
Ding, Zhe, Tian, Yu-Chu, Tang, Maolin, Li, Yuefeng, Wang, You-Gan and Zhou, Chunjie. (2020). Profile-guided three-phase virtual resource management for energy efficiency of data centers. IEEE Transactions on Industrial Electronics. 67(3), pp. 2460-2468. https://doi.org/10.1109/TIE.2019.2902786
Incorporating social objectives in evaluating sustainable fisheries harvest strategy
Wu, Jiafeng, Wang, Na, Hu, Zhi-Hua, Hong, Zhenjie and Wang, You-Gan. (2019). Incorporating social objectives in evaluating sustainable fisheries harvest strategy. Environmental Modeling and Assessment. 24(4), pp. 381-386. https://doi.org/10.1007/s10666-019-9651-9
Significance tests for analyzing gene expression data with small sample sizes
Ullah, Insha, Paul, Sudhir, Hong, Zhenjie and Wang, You-Gan. (2019). Significance tests for analyzing gene expression data with small sample sizes. Bioinformatics. 35(20), pp. 3996-4003. https://doi.org/10.1093/bioinformatics/btz189
Robust Estimation Using Modified Huber’s Functions With New Tails
Jiang, Yunlu, Wang, You-Gan, Fu, Liya and Wang, Xueqin. (2019). Robust Estimation Using Modified Huber’s Functions With New Tails. Technometrics. 61(1), pp. 111-122. https://doi.org/10.1080/00401706.2018.1470037
Dividend growth and equity premium predictability
Zhu, Min, Chen, Rui, Du, Ke and Wang, You-Gan. (2018). Dividend growth and equity premium predictability. International Review of Economics and Finance. 56, pp. 125-137. https://doi.org/10.1016/j.iref.2017.10.020
Robust Regression with Data-Dependent Regularization Parameters and Autoregressive Temporal Correlations
Wang, Na, Wang, You-Gan, Hu, Shuwen, Hu, Zhi-Hua, Xu, Jing, Tang, Hongwu and Jin, Guangqiu. (2018). Robust Regression with Data-Dependent Regularization Parameters and Autoregressive Temporal Correlations. Environmental Modeling and Assessment. 23(6), pp. 779-786. https://doi.org/10.1007/s10666-018-9605-7
Analysis of spatial data with a nested correlation structure
Adegboye, Oyelola, Leung, Denis and Wang, You-Gan. (2018). Analysis of spatial data with a nested correlation structure. Journal of the Royal Statistical Society Series C: Applied Statistics. 67(2), pp. 329-354. https://doi.org/10.1111/rssc.12230
Working correlation structure selection in generalized estimating equations
Fu, Liya, Hao, Yangyang and Wang, You-Gan. (2018). Working correlation structure selection in generalized estimating equations. Computational Statistics. 33(2), pp. 983-996. https://doi.org/10.1007/s00180-018-0800-4
Selection of working correlation structure in generalized estimating equations
Wang, You-Gan and Fu, Liya. (2017). Selection of working correlation structure in generalized estimating equations. Statistics in Medicine. 36(14), pp. 2206-2219. https://doi.org/10.1002/sim.7262
Blockwise AICc for model selection in generalized linear models
Song, Guofeng, Dong, Xiaogang, Wu, Jiafeng and Wang, You-Gan. (2017). Blockwise AICc for model selection in generalized linear models. Environmental Modeling and Assessment. 22(6), pp. 523-533. https://doi.org/10.1007/s10666-017-9552-8
A comment on Koh’s “The optimal design of fallible organizations : Invariance of optimal decision threshold and uniqueness of hierarchy and polyarchy structures”
Zhu, Min, Liu, Chang and Wang, You-Gan. (2017). A comment on Koh’s “The optimal design of fallible organizations : Invariance of optimal decision threshold and uniqueness of hierarchy and polyarchy structures”. Social Choice and Welfare. 48(2), pp. 385-392. https://doi.org/10.1007/s00355-016-1009-5
Movement and growth of the coral reef holothuroids Bohadschia argus and Thelenota ananas
Purcell, Steven W., Piddocke, Toby P., Dalton, Steven J. and Wang, You-Gan. (2016). Movement and growth of the coral reef holothuroids Bohadschia argus and Thelenota ananas. Marine Ecology Progress Series. 551, pp. 201-214. https://doi.org/10.3354/meps11720
Improved confidence intervals for the linkage disequilibrium method for estimating effective population size
Jones, A. T., Ovenden, J. R. and Wang, Y.-G.. (2016). Improved confidence intervals for the linkage disequilibrium method for estimating effective population size. Heredity. 117(4), pp. 217-223. https://doi.org/10.1038/hdy.2016.19