Ground and grain

Journal article


Fritz, Peter. (2022). Ground and grain. Philosophy and Phenomenological Research. 105(2), pp. 299-330. https://doi.org/10.1111/phpr.12822
AuthorsFritz, Peter
Abstract

Current views of metaphysical ground suggest that a true conjunction is immediately grounded in its conjuncts, and only its conjuncts. Similar principles are suggested for disjunction and universal quantification. Here, it is shown that these principles are jointly inconsistent: They require that there is a distinct truth for any plurality of truths. By a variant of Cantor’s Theorem, such a fine-grained individuation of truths is inconsistent. This shows that the notion of grounding is either not in good standing, or that natural assumptions about it need to be revised.

Year2022
JournalPhilosophy and Phenomenological Research
Journal citation105 (2), pp. 299-330
PublisherWiley Periodicals
ISSN0031-8205
Digital Object Identifier (DOI)https://doi.org/10.1111/phpr.12822
Scopus EID2-s2.0-85112084267
Open accessPublished as ‘gold’ (paid) open access
Page range299-330
Publisher's version
License
File Access Level
Open
Output statusPublished
Publication dates
Online11 Aug 2021
Publication process dates
Deposited18 Jan 2023
Permalink -

https://acuresearchbank.acu.edu.au/item/8y9vx/ground-and-grain

Download files


Publisher's version
OA_Fritz_2021_Ground_and_grain.pdf
License: CC BY 4.0
File access level: Open

  • 2
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Closed structure
Fritz, Peter, Lederman, Harvey and Uzquiano, Gabriel. (2021). Closed structure. Journal of Philosophical Logic. https://doi.org/10.1007/s10992-021-09598-5
On Stalnaker’s Simple Theory of Propositions
Fritz, Peter. (2021). On Stalnaker’s Simple Theory of Propositions. Journal of Philosophical Logic. 50, pp. 1-31. https://doi.org/10.1007/s10992-020-09557-6
On higher-order logical grounds
Fritz, Peter. (2020). On higher-order logical grounds. Analysis. 80(4), p. 656–666. https://doi.org/10.1093/analys/anz085
Propositional quantification in Bimodal S5
Fritz, Peter. (2020). Propositional quantification in Bimodal S5. Erkenntnis. 85, pp. 455 - 465. https://doi.org/10.1007/s10670-018-0035-3
Operator arguments revisited
Fritz, Peter, Hawthorne, John and Yli-Vakkuri, Juhani. (2019). Operator arguments revisited. Philosophical Studies. 176(11), pp. 2933 - 2959. https://doi.org/10.1007/s11098-018-1158-8
Higher-Order contingentism, Part 2: Patterns of indistinguishability
Fritz, Peter. (2018). Higher-Order contingentism, Part 2: Patterns of indistinguishability. Journal of Philosophical Logic. 47(3), pp. 407 - 418. https://doi.org/10.1007/s10992-017-9432-3
Can modalities save naive set theory?
Fritz, Peter, Lederman, Harvey, Liu, Tiankai and Scott, Dana. (2018). Can modalities save naive set theory? Review of Symbolic Logic. 11(1), pp. 21 - 47. https://doi.org/10.1017/S1755020317000168
Higher-Order contingentism, Part 3: Expressive limitations
Fritz, Peter. (2018). Higher-Order contingentism, Part 3: Expressive limitations. Journal of Philosophical Logic. 47(4), pp. 649 - 671. https://doi.org/10.1007/s10992-017-9443-0
Logics for propositional contingentism
Fritz, Peter. (2017). Logics for propositional contingentism. The Review of Symbolic Logic. 10(2), pp. 203 - 236. https://doi.org/10.1017/S1755020317000028
A purely recombinatorial puzzle
Fritz, Peter. (2017). A purely recombinatorial puzzle. Noûs. 51(3), pp. 547 - 564. https://doi.org/10.1111/nous.12172
Counting incompossibles
Fritz, Peter and Goodman, Jeremy. (2017). Counting incompossibles. Mind. 126(504), pp. 1063 - 1108. https://doi.org/10.1093/mind/fzw026
Counterfactuals and propositional contingentism
Fritz, Peter and Goodman, Jeremy. (2017). Counterfactuals and propositional contingentism. Review of Symbolic Logic. 10(3), pp. 509 - 529. https://doi.org/10.1017/S1755020317000144
Propositional contingentism
Fritz, Peter. (2016). Propositional contingentism. Review of Symbolic Logic. 9(1), pp. 123 - 142. https://doi.org/10.1017/S1755020315000325
Higher-Order contingentism, Part 1: Closure and generation
Fritz, Peter and Goodman, Jeremy. (2016). Higher-Order contingentism, Part 1: Closure and generation. Journal of Philosophical Logic. 45(6), pp. 645 - 695. https://doi.org/10.1007/s10992-015-9388-0
First-order modal logic in the necessary framework of objects
Fritz, Peter. (2016). First-order modal logic in the necessary framework of objects. Canadian Journal of Philosophy. 46(4-5), pp. 584 - 609. https://doi.org/10.1080/00455091.2015.1132976
What is the correct logic of necessity, actuality and apriority?
Peter Fritz. (2014). What is the correct logic of necessity, actuality and apriority? Review of Symbolic Logic. 7(3), pp. 385-414. https://doi.org/10.1017/S1755020314000136