Black hole quasinormal modes using the asymptotic iteration method

Journal article


Cho, H. T., Cornell, A. S., Doukas, J. and Naylor, W.. (2010). Black hole quasinormal modes using the asymptotic iteration method. Classical and Quantum Gravity. 27(15), pp. 1-12. https://doi.org/10.1088/0264-9381/27/15/155004
AuthorsCho, H. T., Cornell, A. S., Doukas, J. and Naylor, W.
Abstract

In this paper we show that the asymptotic iteration method (AIM) allows one to numerically find the quasinormal modes of Schwarzschild and Schwarzschild de Sitter black holes. An added benefit of the method is that it can also be used to calculate the Schwarzschild anti-de Sitter quasinormal modes for the case of spin-zero perturbations. We also discuss an improved version of the AIM, more suitable for numerical implementation.

Year2010
JournalClassical and Quantum Gravity
Journal citation27 (15), pp. 1-12
PublisherInstitute of Physics Publishing
ISSN0264-9381
Digital Object Identifier (DOI)https://doi.org/10.1088/0264-9381/27/15/155004
Scopus EID2-s2.0-77953737357
Page range1-12
FunderNational Science Council of the Republic of China
Japan Society for the Promotion of Science (JSPS)
Publisher's version
License
All rights reserved
File Access Level
Controlled
Output statusPublished
Publication dates
Online11 Jun 2010
Publication process dates
Deposited29 Sep 2023
Grant IDNSC 96-2112-M-032-006-MY3
P09749
Permalink -

https://acuresearchbank.acu.edu.au/item/8zq8q/black-hole-quasinormal-modes-using-the-asymptotic-iteration-method

Restricted files

Publisher's version

  • 30
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Using technology to understand student ‘misconceptions’ in classical mechanics
Naylor, Wade, Chrysostomou, Anna, Carleschi, Emanuela and Cornell, Alan. (2022). Using technology to understand student ‘misconceptions’ in classical mechanics. In Teaching Innovation for the 21st Century: Showcasing UJ Teaching and Learning 2021 pp. 94-101 Jacana Media.
Correlations between matriculation marks and mechanics misconceptions
Carleschi, Emanuela, Chrysostomou, Anna, Cornell, Alan and Naylor, Wade. (2022). Correlations between matriculation marks and mechanics misconceptions. The 66th Annual Conference of the SA institute of Physics. Virtual Conference 04 - 08 Jul 2022 South Africa: Annual Conference of the South African Institute of Physics. pp. 444-449
Probing the effect on student conceptual understanding due to a forced mid-semester transition to online teaching
Carleschi, Emanuela, Chrysostomou, Anna, Cornell, Alan S. and Naylor, Wade. (2022). Probing the effect on student conceptual understanding due to a forced mid-semester transition to online teaching. European Journal of Physics. 43(3), p. Article 035702. https://doi.org/10.1088/1361-6404/ac41d9
Polarising questions in the Force Concept Inventory
Chrysostomou, Anna, Carleschi, Emanuela, Cornell, Alan and Naylor, Wade. (2021). Polarising questions in the Force Concept Inventory. The 65th Annual Conference of the South African Institute of Physics. Virtual Conference 22 - 30 Jul 2021 South Africa: Annual Conference of the South African Institute of Physics. pp. 412-417
Gender gap and polarisation of physics on global courses
Alinea, Allan L. and Naylor, Wade. (2017). Gender gap and polarisation of physics on global courses. Physics Education. 33(2), p. Article 03.
Logarithmic divergences in the κ-inflationary power spectra computed through the uniform approximation
Alinea, Allan L., Kubota, Takahiro and Naylor, Wade. (2016). Logarithmic divergences in the κ-inflationary power spectra computed through the uniform approximation. Journal of Cosmology and Astroparticle Physics. 2016(2), pp. 1-31. https://doi.org/10.1088/1475-7516/2016/02/028
Polarization of physics on global courses
Alinea, Allan L. and Naylor, Wade. (2015). Polarization of physics on global courses. Physics Education. 50(2), pp. 210-217. https://doi.org/10.1088/0031-9120/50/2/210
Adiabatic regularisation of power spectra in κ-inflation
Alinea, Allan L., Kubota, Takahiro, Nakanishi, Yukari and Naylor, Wade. (2015). Adiabatic regularisation of power spectra in κ-inflation. Journal of Cosmology and Astroparticle Physics. 2015(6), pp. 1-17. https://doi.org/10.1088/1475-7516/2015/06/019
Gravitino fields in Schwarzschild black hole spacetimes
Chen, C.-H., Cho, H. T., Cornell, A. S., Harmsen, G. and Naylor, Wade. (2015). Gravitino fields in Schwarzschild black hole spacetimes. Chinese Journal of Physics. 53(6), p. Article 110101. https://doi.org/10.6122/CJP.20150511
Vacuum-excited surface plasmon polaritons
Naylor, Wade. (2015). Vacuum-excited surface plasmon polaritons. Physical Review A. 91(5), p. Article 053804. https://doi.org/10.1103/PhysRevA.91.053804
The conformal transformation in general single field inflation with non-minimal coupling
Kubota, Takahiro, Misumi, Nobuhiko, Naylor, Wade and Okuda, Naoya. (2012). The conformal transformation in general single field inflation with non-minimal coupling. Journal of Cosmology and Astroparticle Physics. 02, pp. 1-16. https://doi.org/10.1088/1475-7516/2012/02/034
Scalar spheroidal harmonics in five dimensional Kerr-(A)dS
Cho, Hing Tong, Cornell, Alan, Doukas, Jason and Naylor, Wade. (2012). Scalar spheroidal harmonics in five dimensional Kerr-(A)dS. Progress of Theoretical and Experimental Physics. 128(2), pp. 227-241. https://doi.org/10.1143/PTP.128.227
A new approach to black hole quasinormal modes : A review of the asymptotic iteration method
Cho, H. T., Cornell, A. S., Doukas, J., Huang, T.-R. and Naylor, Wade. (2012). A new approach to black hole quasinormal modes : A review of the asymptotic iteration method. Advances in Mathematical Physics. 2021, p. Article 281705. https://doi.org/10.1155/2012/281705
Towards particle creation in a microwave cylindrical cavity
Naylor, Wade. (2012). Towards particle creation in a microwave cylindrical cavity. Physical Review A. 86(2), p. Article 023842. https://doi.org/10.1103/PhysRevA.86.023842
Graviton emission from a higher-dimensional black hole
Cornell, Alan S., Naylor, Wade and Sasaki, Misao. (2006). Graviton emission from a higher-dimensional black hole. Journal of High Energy Physics. 2006(2), p. Article 12. https://doi.org/10.1088/1126-6708/2006/02/012