Zero forcing in iterated line digraphs

Journal article


Ferrero, Daniela, Kalinowski, Thomas and Stephen, Sudeep. (2019). Zero forcing in iterated line digraphs. Discrete Applied Mathematics. 255, pp. 198-208. https://doi.org/10.1016/j.dam.2018.08.019
AuthorsFerrero, Daniela, Kalinowski, Thomas and Stephen, Sudeep
Abstract

Zero forcing is a propagation process on a graph, or digraph, defined in linear algebra to provide a bound for the minimum rank problem. Independently, zero forcing was introduced in physics, computer science and network science, areas where line digraphs are frequently used as models. Zero forcing is also related to power domination, a propagation process that models the monitoring of electrical power networks.

In this paper we study zero forcing in iterated line digraphs and provide a relationship between zero forcing and power domination in line digraphs. In particular, for regular iterated line digraphs we determine the minimum rank/maximum nullity, zero forcing number and power domination number, and provide constructions to attain them. We conclude that regular iterated line digraphs present optimal minimum rank/maximum nullity, zero forcing number and power domination number, and apply our results to determine those parameters on some families of digraphs often used in applications.

Keywordsminimum rank; zero forcing; power domination; iterated line digraphs
Year2019
JournalDiscrete Applied Mathematics
Journal citation255, pp. 198-208
PublisherElsevier B.V.
ISSN0166-218X
Digital Object Identifier (DOI)https://doi.org/10.1016/j.dam.2018.08.019
Scopus EID2-s2.0-85054797696
Page range198-208
Publisher's version
License
All rights reserved
File Access Level
Controlled
Output statusPublished
Publication dates
Online17 Oct 2018
Publication process dates
Accepted24 Aug 2018
Deposited30 Nov 2023
Permalink -

https://acuresearchbank.acu.edu.au/item/90035/zero-forcing-in-iterated-line-digraphs

Restricted files

Publisher's version

  • 143
    total views
  • 0
    total downloads
  • 88
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Embedding Wheel-like Networks
Rajan, R. Sundara, Rajalaxmi, Rajalaksmi, Stephen, Sudeep, Shantrinal, A. Arul and Kumar, K. Jagadeesh. (2023). Embedding Wheel-like Networks. Iranian Academic Center for Education, Culture and Research. 18(2), pp. 185-198. https://doi.org/10.61186/ijmsi.18.2.185
Minimum rank and zero forcing number for butterfly networks
Ferrero, Daniela, Grigorious, Cyriac, Kalinowski, Thomas, Ryan, Joe and Stephen, Sudeep. (2019). Minimum rank and zero forcing number for butterfly networks. Journal of Combinatorial Optimization. 37(3), pp. 970-988. https://doi.org/10.1007/s10878-018-0335-1
A lower bound on the zero forcing number
Davila, Randy, Kalinowski, Thomas and Stephen, Sudeep. (2018). A lower bound on the zero forcing number. Discrete Applied Mathematics. 250, pp. 363-367. https://doi.org/10.1016/j.dam.2018.04.015
Average distance in interconnection networks via reduction theorems for vertex-weighted graphs
Klavžar, Sandi, Manuel, Paul, Nadjafi-Arani, M. J., Rajan, R. Sundara, Grigorious, Cyriac and Stephen, Sudeep. (2016). Average distance in interconnection networks via reduction theorems for vertex-weighted graphs. The Computer Journal. 59(12), pp. 1900-1910. https://doi.org/10.1093/comjnl/bxw046
Resolving-power dominating sets
Stephen, Sudeep, Rajan, Bharati, Grigorious, Cyriac and William, Albert. (2015). Resolving-power dominating sets. Applied Mathematics and Computation. 256, pp. 778-785. https://doi.org/10.1016/j.amc.2015.01.037
On the Strong Metric Dimension of Tetrahedral Diamond Lattice
Manuel, Paul, Rajan, Bharati, Grigorious, Cyriac and Stephen, Sudeep. (2015). On the Strong Metric Dimension of Tetrahedral Diamond Lattice. Mathematics in Computer Science. 9(2), pp. 201-208. https://doi.org/10.1007/s11786-015-0226-0
Power domination in certain chemical structures
Stephen, Sudeep, Rajan, Bharati, Ryan, Joe, Grigorious, Cyriac and William, Albert. (2015). Power domination in certain chemical structures. Journal of Discrete Algorithms (Amsterdam). 33, pp. 10-18. https://doi.org/10.1016/j.jda.2014.12.003
On the metric dimension of circulant and Harary graphs
Grigorious, Cyriac, Manuel, Paul, Miller, Mirka, Rajan, Bharati and Stephen, Sudeep. (2014). On the metric dimension of circulant and Harary graphs. Applied Mathematics and Computation. 248, pp. 47-54. https://doi.org/10.1016/j.amc.2014.09.045
On the partition dimension of a class of circulant graphs
Grigorious, Cyriac, Stephen, Sudeep, Rajan, Bharati, Miller, Mirka and William, Albert. (2014). On the partition dimension of a class of circulant graphs. Information Processing Letters. 114(7), pp. 353-356. https://doi.org/10.1016/j.ipl.2014.02.005