Quantitative evaluation of the major determinants of human gait
Journal article
Lin, Yi-Chung, Gfoehler, Margit and Pandy, Marcus. (2014). Quantitative evaluation of the major determinants of human gait. Journal of Biomechanics. 47(6), pp. 1324-1331. https://doi.org/10.1016/j.jbiomech.2014.02.002
Authors | Lin, Yi-Chung, Gfoehler, Margit and Pandy, Marcus |
---|---|
Abstract | Accurate knowledge of the isolated contributions of joint movements to the three-dimensional displacement of the center of mass (COM) is fundamental for understanding the kinematics of normal walking and for improving the treatment of gait disabilities. Saunders et al. (1953) identified six kinematic mechanisms to explain the efficient progression of the whole-body COM in the sagittal, transverse, and coronal planes. These mechanisms, referred to as the major determinants of gait, were pelvic rotation, pelvic list, stance knee flexion, foot and knee mechanisms, and hip adduction. The aim of the present study was to quantitatively assess the contribution of each major gait determinant to the anteroposterior, vertical, and mediolateral displacements of the COM over one gait cycle. The contribution of each gait determinant was found by applying the concept of an ‘influence coefficient’, wherein the partial derivative of the COM displacement with respect to a prescribed determinant was calculated. The analysis was based on three-dimensional measurements of joint angular displacements obtained from 23 healthy young adults walking at slow, normal and fast speeds. We found that hip flexion, stance knee flexion, and ankle-foot interaction (comprised of ankle plantarflexion, toe flexion and the displacement of the center of pressure) are the major determinants of the displacements of the COM in the sagittal plane, while hip adduction and pelvic list contribute most significantly to the mediolateral displacement of the COM in the coronal plane. Pelvic rotation and pelvic list contribute little to the vertical displacement of the COM at all walking speeds. Pelvic tilt, hip rotation, subtalar inversion, and back extension, abduction and rotation make negligible contributions to the displacements of the COM in all three anatomical planes. |
Keywords | Compass gait ; Normal walking ; Pathological walking ; Center-of-mass displacement ; Knee flexion; Hip flexion; Hip adduction; Pelvic list ; Ankle plantarflexion |
Year | 01 Jan 2014 |
Journal | Journal of Biomechanics |
Journal citation | 47 (6), pp. 1324-1331 |
Publisher | Elsevier |
ISSN | 0021-9290 |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.jbiomech.2014.02.002 |
Web address (URL) | https://www.sciencedirect.com/science/article/pii/S0021929014000888?via%3Dihub |
Open access | Published as non-open access |
Research or scholarly | Research |
Page range | 1324-1331 |
Publisher's version | License All rights reserved File Access Level Controlled |
Output status | Published |
Publication dates | |
14 Feb 2014 | |
Publication process dates | |
Accepted | 08 Feb 2014 |
Deposited | 16 May 2024 |
Supplemental file | License All rights reserved File Access Level Controlled |
ARC Funded Research | This output has been funded, wholly or partially, under the Australian Research Council Act 2001 |
Additional information | © 2014 Elsevier Ltd. All rights reserved. |
This work was supported by an Australian Research Council Grant (DP0878705) and a VESKI Innovation Fellowship awarded to MGP. We thank Anthony Schache, Tim Dorn, Nick Brown, Yoong Ping Lim, and Mirjana Jancic for their assistance with the gait experiments. | |
Place of publication | United Kingdom |
https://acuresearchbank.acu.edu.au/item/90767/quantitative-evaluation-of-the-major-determinants-of-human-gait
Restricted files
Publisher's version
Supplemental file
126
total views0
total downloads104
views this month0
downloads this month