Liver specification of human iPSC-derived endothelial cells transplanted into mouse liver
Journal article
Yap, Kiryu K., Schröder, Jan, Gerrand, Yi-Wen, Dobric, Aleksandar, Kong, Anne M, Fox, Adrian M., Knowles, Brett, Banting, Simon W., Elefanty, Andrew G., Stanley, Eduoard G., Yeoh, George C., Lockwood, Glen P., Cogger, Victoria C., Morrison, Wayne, Polo, Jose M. and Mitchell, Geraldine. (2024). Liver specification of human iPSC-derived endothelial cells transplanted into mouse liver. JHEP Reports. 6(5), pp. 1-18. https://doi.org/10.1016/j.jhepr.2024.101023
Authors | Yap, Kiryu K., Schröder, Jan, Gerrand, Yi-Wen, Dobric, Aleksandar, Kong, Anne M, Fox, Adrian M., Knowles, Brett, Banting, Simon W., Elefanty, Andrew G., Stanley, Eduoard G., Yeoh, George C., Lockwood, Glen P., Cogger, Victoria C., Morrison, Wayne, Polo, Jose M. and Mitchell, Geraldine |
---|---|
Abstract | Background & Aims: Liver sinusoidal endothelial cells (LSECs) are important in liver development, regeneration, and pathophysiology, but the differentiation process underlying their tissue-specific phenotype is poorly understood and difficult to study because primary human cells are scarce. The aim of this study was to use human induced pluripotent stem cell (hiPSC)-derived LSEC-like cells to investigate the differentiation process of LSECs. Methods: hiPSC-derived endothelial cells (iECs) were transplanted into the livers of Fah−/−/Rag2−/−/Il2rg−/− mice and assessed over a 12-week period. Lineage tracing, immunofluorescence, flow cytometry, plasma human factor VIII measurement, and bulk and single cell transcriptomic analysis were used to assess the molecular and functional changes that occurred following transplantation. Results: Progressive and long-term repopulation of the liver vasculature occurred as iECs expanded along the sinusoids between hepatocytes and increasingly produced human factor VIII, indicating differentiation into LSEC-like cells. To chart the developmental profile associated with LSEC specification, the bulk transcriptomes of transplanted cells between 1 and 12 weeks after transplantation were compared against primary human adult LSECs. This demonstrated a chronological increase in LSEC markers, LSEC differentiation pathways, and zonation. Bulk transcriptome analysis suggested that the transcription factors NOTCH1, GATA4, and FOS have a central role in LSEC specification, interacting with a network of 27 transcription factors. Novel markers associated with this process included EMCN and CLEC14A. Additionally, single cell transcriptomic analysis demonstrated that transplanted iECs at 4 weeks contained zonal subpopulations with a region-specific phenotype. Conclusions: Collectively, this study confirms that hiPSCs can adopt LSEC-like features and provides insight into LSEC specification. This humanised xenograft system can be applied to further interrogate LSEC developmental biology and pathophysiology, bypassing current logistical obstacles associated with primary human LSECs. Impact and implications: Liver sinusoidal endothelial cells (LSECs) are important cells for liver biology, but better model systems are required to study them. We present a pluripotent stem cell xenografting model that produces human LSEC-like cells. A detailed and longitudinal transcriptomic analysis of the development of LSEC-like cells is included, which will guide future studies to interrogate LSEC biology and produce LSEC-like cells that could be used for regenerative medicine. |
Keywords | Liver; Liver sinusoidal endothelial cells; Tissue specification; Induced pluripotent stem cells; Cell transplantation |
Year | 01 Jan 2024 |
Journal | JHEP Reports |
Journal citation | 6 (5), pp. 1-18 |
Publisher | Elsevier B.V. (Netherlands) |
ISSN | 2589-5559 |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.jhepr.2024.101023 |
Scopus EID | 1-s2.0-S2589555924000247 |
Web address (URL) | https://www.sciencedirect.com/science/article/pii/S2589555924000247 |
Open access | Published as ‘gold’ (paid) open access |
Research or scholarly | Research |
Page range | 1-18 |
Publisher's version | License File Access Level Open |
Output status | Published |
Publication dates | |
May 2024 | |
Publication process dates | |
Accepted | 23 Jan 2024 |
Deposited | 20 May 2024 |
Additional information | ©2024TheAuthor(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). |
This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). | |
Supplementary data to this article can be found online at https://doi.org/1 0.1016/j.jhepr.2024.101023 | |
Place of publication | Netherlands |
https://acuresearchbank.acu.edu.au/item/9087y/liver-specification-of-human-ipsc-derived-endothelial-cells-transplanted-into-mouse-liver
Download files
Publisher's version
OA_Morrison_2024_Liver_specification_of_human_iPSC-derived.pdf | |
License: CC BY-NC-ND 4.0 | |
File access level: Open |
46
total views18
total downloads5
views this month1
downloads this month