Real-time and automatic system for performance evaluation of karate skills using motion capture sensors and continuous wavelet transform

Journal article


Fathalla, Ahmed, Salah, Ahmad, Bekhit, Mahmoud, Eldesouky, Esraa, Talha, Ahmed, Zenhom, Abdalla and Ali, Ahmed. (2023). Real-time and automatic system for performance evaluation of karate skills using motion capture sensors and continuous wavelet transform. International Journal of Intelligent Systems. 2023, pp. 1-11. https://doi.org/10.1155/2023/1561942
AuthorsFathalla, Ahmed, Salah, Ahmad, Bekhit, Mahmoud, Eldesouky, Esraa, Talha, Ahmed, Zenhom, Abdalla and Ali, Ahmed
Abstract

In sports science, the automation of performance analysis and assessment is urgently required to increase the evaluation accuracy and decrease the performance analysis time of a subject. Existing methods of performance analysis and assessment are either performed manually based on human experts’ opinions or using motion analysis software, i.e., biomechanical analysis software, to assess only one side of a subject. Therefore, we propose an automated system for performance analysis and assessment that can be used for any human movement. The performance of any skill can be described by a curve depicting the joint angle over the time required to perform a skill. In this study, we focus on only 14 body joints, and each joint comprises three angles. The proposed system comprises three main stages. In the first stage, data are obtained using motion capture inertial measurement unit sensors from top professional fighters/players while they are performing a certain skill. In the second stage, the collected sensor data obtained are input to the biomechanical software to extract the player’s joint angle curve. Finally, each joint angle curve is processed using a continuous wavelet transform to extract the main curve points (i.e., peaks and valleys). Finally, after extracting the joint curves from several top players, we summarize the players’ curves based on five statistical indicators, i.e., the minimum, maximum, mean, and mean 
± standard deviation. These five summarized curves are regarded as standard performance curves for the joint angle. When a player’s joint curve is surrounded by the five summarized curves, the performance is considered acceptable. Otherwise, the performance is considered unsatisfactory. The proposed system is evaluated based on four different karate skills. The results of the proposed system are identical to the decisions of the expert panels and are thus suitable for real-time decisions.

Keywordsmotion analysis; sports science; motion capture; inertial measurement unit; continuous wavelet transform; performance appraisal
Year01 Jan 2023
JournalInternational Journal of Intelligent Systems
Journal citation2023, pp. 1-11
PublisherHindawi
ISSN0884-8173
Digital Object Identifier (DOI)https://doi.org/10.1155/2023/1561942
Web address (URL)https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/1561942
Open accessPublished as ‘gold’ (paid) open access
Research or scholarlyResearch
Page range1-11
Publisher's version
License
File Access Level
Open
Output statusPublished
Publication dates
Online21 Feb 2023
Publication process dates
Accepted10 Dec 2022
Deposited14 Jun 2024
Additional information

Copyright © 2023 Ahmed Fathalla et al.

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Place of publicationUnited States
Permalink -

https://acuresearchbank.acu.edu.au/item/909v3/real-time-and-automatic-system-for-performance-evaluation-of-karate-skills-using-motion-capture-sensors-and-continuous-wavelet-transform

Download files


Publisher's version
OA_Bekhit_2023_Real_time_and_automatic_system_for.pdf
License: CC BY 4.0
File access level: Open

  • 29
    total views
  • 19
    total downloads
  • 1
    views this month
  • 1
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Optimizing Placement and Scheduling for VNF by a Multi-objective Optimization Genetic Algorithm
Thien, Phan Duc, Wu, Fan, Bekhit, Mahmoud, Fathalla, Ahmed and Salah, Ahmed. (2024). Optimizing Placement and Scheduling for VNF by a Multi-objective Optimization Genetic Algorithm. International Journal of Computational Intelligence Systems. 17(1), pp. 1-18. https://doi.org/10.1007/s44196-024-00430-x
A Survey of Trendy Financial Sector Applications of Machine and Deep Learning
Lestari, Nur Indah, Hussain, Walayat, Merigo, Jose and Bekhit, Mahmoud. (2023). A Survey of Trendy Financial Sector Applications of Machine and Deep Learning. Second EAI International Conference, BigIoT-EDU 2022. Switzerland: Springer Nature. pp. 619-633 https://doi.org/10.1007/978-3-031-23944-1_68
Heterogeneous transfer learning in structural health monitoring for high rise structures
Anaissi, Ali, D’souza, Kenneth, Suleiman, Basem, Bekhit, Mahmoud and Alyassine, Widad. (2023). Heterogeneous transfer learning in structural health monitoring for high rise structures. Second international conference on innovations in computing research (ICR'23). Switzerland: Springer Nature. pp. 405 - 417 https://doi.org/10.1007/978-3-031-35308-6
Multi-objective VNF placement optimization with NSGA-III
Bekhit, Mahmoud, Fathalla, Ahmed, Eldesouky, Esraa and Salah, Ahmad. (2023). Multi-objective VNF placement optimization with NSGA-III. 2023 International conference on advances in computing research (ACR'23). Switzerland: Springer Nature. pp. 481 - 493 https://doi.org/10.1007/978-3-031-33743-7_39
Comparing Ensemble Learning Techniques on Data Transmission Reduction for IoT Systems
Salah, Ahmad, Bekhit, Mahmoud, M. Alkalbani, Asma, Mohamed, Mohamed, Lestari, Nur Indah and Fathalla, Ahmed. (2023). Comparing Ensemble Learning Techniques on Data Transmission Reduction for IoT Systems. Switzerland: Springer Nature. pp. 72-85 https://doi.org/10.1007/978-3-031-33743-7_6
Price Prediction of Seasonal Items Using Time Series Analysis
Salah, Ahmed, Bekhit, Mahmoud, Eldesouky, Esraa, Ali, Ahmed and Fathalla, Ahmed. (2023). Price Prediction of Seasonal Items Using Time Series Analysis. Computer Systems Science and Engineering. 46(1), pp. 445-460. https://doi.org/10.32604/csse.2023.035254
An adaptive jellyfish search algorithm for packing items with conflict
El-Ashmawi, Walaa H., Salah, Ahmed, Bekhit, Mahmoud, Xiao, Guoqing, Al Ruqeishi, Khalil and Fathalla, Ahmed. (2023). An adaptive jellyfish search algorithm for packing items with conflict. Mathematics. 11(14), pp. 1-28. https://doi.org/10.3390/math11143219
A Survey of Trendy Financial Sector Applications of Machine and Deep Learning
Lestari, Nur Indah, Hussain, Walayat, Merigo, Jose and Bekhit, Mahmoud. (2023). A Survey of Trendy Financial Sector Applications of Machine and Deep Learning. Second EAI International Conference, BigIoT-EDU 2022. Virtual Event 29 - 31 Jul 2022 Switzerland: Springer. pp. 619-633 https://doi.org/10.1007/978-3-031-23944-1
A survey on deep learning architectures in human activities recognition application in sports science, healthcare, and security
Adel, Basant, Badran, Asmaa, Elshami, Nada, Salah, Ahmad, Fathalla, Ahmed and Bekhit, Mahmoud. (2022). A survey on deep learning architectures in human activities recognition application in sports science, healthcare, and security. ICR 2022 International Conference on Innovations in Computing Research. Athens, Greece 29 - 31 Aug 2022 Switzerland: Springer Nature. pp. 121 - 134 https://doi.org/10.1007/978-3-031-14054-9_13
Data Security in Hybrid Cloud Computing Using AES Encryption for Health Sector Organization
Bekhit, Mahmoud and Alsadoon, Abeer. (2022). Data Security in Hybrid Cloud Computing Using AES Encryption for Health Sector Organization. 7th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, (CITISIA). Sydney, Australia 14 - 16 Nov 2022 Switzerland: Springer Nature. pp. 155-167 https://doi.org/10.1007/978-3-031-29078-7_15
Machine learning and deep learning for predicting indoor and outdoor IoT temperature monitoring systems
Lestari, Nur Indah, Bekhit, Mahmoud, Mohamed, Mohamed, Fathalla, Ahmed and Salah, Ahmad. (2021). Machine learning and deep learning for predicting indoor and outdoor IoT temperature monitoring systems. IoT as a service 7th EAI international conference, IoTaas 2021. Sydney Australia 13 - 14 Dec 2021 Switzerland: Springer Nature. pp. 185 - 197 https://doi.org/10.1007/978-3-030-95987-6_13
A robust UWSN handover prediction system using ensemble learning
Eldesouky, Esraa, Bekhit, Mahmoud, Fathalla, Ahmed, Salah, Ahmed and Ali, Ahmed. (2021). A robust UWSN handover prediction system using ensemble learning. Sensors. 21(17), pp. 1-16. https://doi.org/10.3390/s21175777
Marine data prediction : An evaluation of machine learning, deep learning, and statistical predictive models
Ali, Ahmed, Fathalla, Ahmed, Salah, Ahmad, Bekhit, Mahmoud and Eldesouky, Esraa. (2021). Marine data prediction : An evaluation of machine learning, deep learning, and statistical predictive models. Computational Intelligence and Neuroscience  (Delisted by Scopus/WOS as a paper mill). 2021, pp. 1-13. https://doi.org/10.1155/2021/8551167
Multi objective resource optimisation for network function virtualisation requests
Bekhit, Mahmoud, Abolhasan, Mehran, Lipman, Justin, Liu, Ren and Ni, Wei. (2019). Multi objective resource optimisation for network function virtualisation requests. 26th International Conference on Systems Engineering (ICSEng). University of Technology Sydney, Australia 18 - 20 Dec 2018 Australia: IEEE Xplore. pp. 1-7 https://doi.org/10.1109/ICSENG.2018.8638192
Multi-objective transmitters placement problem in wireless networks
Gamal, Mahmoud, Morsy, Ehab and Fathy, Ahmed. (2015). Multi-objective transmitters placement problem in wireless networks. SoICT: Information and Communication Technology . Vietnam: Association for Computing Machinery. pp. 156 - 162 https://doi.org/10.1145/2833258.2833286
Multi-objective nodes placement problem in large regions wireless networks
Bekhit, Mahmoud, Morsy, Ehab and Salah, Ahmad. (2014). Multi-objective nodes placement problem in large regions wireless networks. 4th international conference on electronic, communications and networks (CECNet2014). Beijing, China 12 - 15 Dec 2014 China: CRC Press. pp. 61 - 66