Self-reported and digital-trace measures of computer science students’ self-regulated learning in blended course designs
Journal article
Han, Feifei and Ellis, Robert A.. (2023). Self-reported and digital-trace measures of computer science students’ self-regulated learning in blended course designs. Education and Information Technologies. 28(10), pp. 13253-13268. https://doi.org/10.1007/s10639-023-11698-5
Authors | Han, Feifei and Ellis, Robert A. |
---|---|
Abstract | This study investigated the extent to which self-report and digital-trace measures of students’ self-regulated learning in blended course designs align with each other amongst 145 first-year computer science students in a blended “computer systems” course. A self-reported Motivated Strategies for Learning Questionnaire was used to measure students’ self-efficacy, intrinsic motivation, test anxiety, and use of self-regulated learning strategies. Frequencies of interactions with six different online learning activities were digital-trace measures of students’ online learning interactions. Students’ course marks were used to represent their academic performance. SPSS 28 was used to analyse the data. A hierarchical cluster analysis using self-reported measures categorized students as better or poorer self-regulated learners; whereas a hierarchical cluster analysis using digital-trace measures clustered students as more active or less active online learners. One-way ANOVAs showed that: 1) better self-regulated learners had higher frequencies of interactions with three out of six online learning activities than poorer self-regulated learners. 2) More active online learners reported higher self-efficacy, higher intrinsic motivation, and more frequent use of positive self-regulated learning strategies, than less active online learners. Furthermore, a cross-tabulation showed significant (p < .01) but weak association between student clusters identified by self-reported and digital-trace measures, demonstrating self-reported and digital-trace descriptions of students’ self-regulated learning experiences were consistent to a limited extent. To help poorer self-regulated learners improve their learning experiences in blended course designs, teachers may invite better self-regulated learners to share how they approach learning in class. |
Keywords | Self-reported measure; Digital-trace measure; Self-regulated learning; Blended course designs; Computer science students |
Year | 01 Jan 2023 |
Journal | Education and Information Technologies |
Journal citation | 28 (10), pp. 13253-13268 |
Publisher | Springer New York LLC |
ISSN | 1360-2357 |
Digital Object Identifier (DOI) | https://doi.org/10.1007/s10639-023-11698-5 |
Web address (URL) | https://link.springer.com/article/10.1007/s10639-023-11698-5#data-availability |
Open access | Published as ‘gold’ (paid) open access |
Research or scholarly | Research |
Page range | 13253-13268 |
Publisher's version | License File Access Level Open |
Output status | Published |
Publication dates | |
Online | 24 Mar 2023 |
Publication process dates | |
Accepted | 23 Feb 2023 |
Deposited | 26 Jul 2024 |
ARC Funded Research | This output has been funded, wholly or partially, under the Australian Research Council Act 2001 |
Grant ID | DP150104163 |
Additional information | © The Author(s) 2023 |
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. | |
Open Access funding enabled and organized by CAUL and its Member Institutions This work was supported by the Australian Research Council [grant number DP150104163]. | |
Place of publication | United States |
https://acuresearchbank.acu.edu.au/item/90v70/self-reported-and-digital-trace-measures-of-computer-science-students-self-regulated-learning-in-blended-course-designs
Download files
Publisher's version
OA_Han_2023_Self_reported_and_digital_trace_measures.pdf | |
License: CC BY 4.0 | |
File access level: Open |
20
total views11
total downloads3
views this month1
downloads this month