Higher-order metaphysics : An introduction

Book chapter


Fritz, Peter and Jones, Nicholas K.. (2024). Higher-order metaphysics : An introduction. In In Fritz, Peter and Jones, Nicholas K. (Ed.). Higher-order metaphysics pp. 3-46 Oxford University Press. https://doi.org/10.1093/oso/9780192894885.003.0001
AuthorsFritz, Peter and Jones, Nicholas K.
EditorsFritz, Peter and Jones, Nicholas K.
Abstract

This chapter provides an introduction to higher-order metaphysics as well as to the contributions to this volume. We discuss five topics, corresponding to the five parts of this volume, and summarize the contributions to each part. First, we motivate the usefulness of higher-order quantification in metaphysics using a number of examples, and discuss the question of how such quantifiers should be interpreted. We provide a brief introduction to the most common forms of higher-order logics used in metaphysics, and indicate a number of questions which can be raised in such systems using logical vocabulary alone. Using a further example, we return to applications of higher-order logics in metaphysics. We also mention key developments in the history of higher-order logic as it pertains to metaphysics. Finally, we mention certain arguments which have been raised against the use of higher-order logic, and some ways of responding to them.

Keywordshigher-order metaphysics; higher-order logic; metaphysics; type theory; higher-order quantification; properties; propositions
Page range3-46
Year2024
Book titleHigher-order metaphysics
PublisherOxford University Press
Place of publicationOxford, United Kingdom
ISBN9780192894885
9780191915765
Digital Object Identifier (DOI)https://doi.org/10.1093/oso/9780192894885.003.0001
Scopus EID2-s2.0-85196149911
Publisher's version
License
All rights reserved
File Access Level
Controlled
Output statusPublished
Publication dates
Online21 Mar 2024
Print2024
Publication process dates
Deposited20 Jan 2025
Permalink -

https://acuresearchbank.acu.edu.au/item/9128x/higher-order-metaphysics-an-introduction

Restricted files

Publisher's version

  • 6
    total views
  • 0
    total downloads
  • 3
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Being somehow without (possibly) being something
Fritz, Peter. (2023). Being somehow without (possibly) being something. Mind. 132(526), pp. 348-371. https://doi.org/10.1093/mind/fzac052
Operands and instances
Fritz, Peter. (2023). Operands and instances. The Review of Symbolic Logic. 16(1), pp. 188-209. https://doi.org/10.1017/S175502032100040X
Axiomatizability of propositionally quantified modal logics on relational frames
Fritz, Peter. (2022). Axiomatizability of propositionally quantified modal logics on relational frames. The Journal of Symbolic Logic. pp. 1-36. https://doi.org/10.1017/jsl.2022.79
Ground and grain
Fritz, Peter. (2022). Ground and grain. Philosophy and Phenomenological Research. 105(2), pp. 299-330. https://doi.org/10.1111/phpr.12822
Closed structure
Fritz, Peter, Lederman, Harvey and Uzquiano, Gabriel. (2021). Closed structure. Journal of Philosophical Logic. 50, pp. 1249-1291. https://doi.org/10.1007/s10992-021-09598-5
On Stalnaker’s Simple Theory of Propositions
Fritz, Peter. (2021). On Stalnaker’s Simple Theory of Propositions. Journal of Philosophical Logic. 50, pp. 1-31. https://doi.org/10.1007/s10992-020-09557-6
On higher-order logical grounds
Fritz, Peter. (2020). On higher-order logical grounds. Analysis. 80(4), p. 656–666. https://doi.org/10.1093/analys/anz085
Propositional quantification in Bimodal S5
Fritz, Peter. (2020). Propositional quantification in Bimodal S5. Erkenntnis. 85, pp. 455 - 465. https://doi.org/10.1007/s10670-018-0035-3
Operator arguments revisited
Fritz, Peter, Hawthorne, John and Yli-Vakkuri, Juhani. (2019). Operator arguments revisited. Philosophical Studies. 176(11), pp. 2933 - 2959. https://doi.org/10.1007/s11098-018-1158-8
Higher-Order contingentism, Part 2: Patterns of indistinguishability
Fritz, Peter. (2018). Higher-Order contingentism, Part 2: Patterns of indistinguishability. Journal of Philosophical Logic. 47(3), pp. 407 - 418. https://doi.org/10.1007/s10992-017-9432-3
Can modalities save naive set theory?
Fritz, Peter, Lederman, Harvey, Liu, Tiankai and Scott, Dana. (2018). Can modalities save naive set theory? Review of Symbolic Logic. 11(1), pp. 21 - 47. https://doi.org/10.1017/S1755020317000168
Higher-Order contingentism, Part 3: Expressive limitations
Fritz, Peter. (2018). Higher-Order contingentism, Part 3: Expressive limitations. Journal of Philosophical Logic. 47(4), pp. 649 - 671. https://doi.org/10.1007/s10992-017-9443-0
Logics for propositional contingentism
Fritz, Peter. (2017). Logics for propositional contingentism. The Review of Symbolic Logic. 10(2), pp. 203 - 236. https://doi.org/10.1017/S1755020317000028
A purely recombinatorial puzzle
Fritz, Peter. (2017). A purely recombinatorial puzzle. Noûs. 51(3), pp. 547 - 564. https://doi.org/10.1111/nous.12172
Counting incompossibles
Fritz, Peter and Goodman, Jeremy. (2017). Counting incompossibles. Mind. 126(504), pp. 1063 - 1108. https://doi.org/10.1093/mind/fzw026
Counterfactuals and propositional contingentism
Fritz, Peter and Goodman, Jeremy. (2017). Counterfactuals and propositional contingentism. Review of Symbolic Logic. 10(3), pp. 509 - 529. https://doi.org/10.1017/S1755020317000144
Propositional contingentism
Fritz, Peter. (2016). Propositional contingentism. Review of Symbolic Logic. 9(1), pp. 123 - 142. https://doi.org/10.1017/S1755020315000325
Higher-Order contingentism, Part 1: Closure and generation
Fritz, Peter and Goodman, Jeremy. (2016). Higher-Order contingentism, Part 1: Closure and generation. Journal of Philosophical Logic. 45(6), pp. 645 - 695. https://doi.org/10.1007/s10992-015-9388-0
First-order modal logic in the necessary framework of objects
Fritz, Peter. (2016). First-order modal logic in the necessary framework of objects. Canadian Journal of Philosophy. 46(4-5), pp. 584 - 609. https://doi.org/10.1080/00455091.2015.1132976
What is the correct logic of necessity, actuality and apriority?
Peter Fritz. (2014). What is the correct logic of necessity, actuality and apriority? Review of Symbolic Logic. 7(3), pp. 385-414. https://doi.org/10.1017/S1755020314000136