Impaired postprandial adipose tissue microvascular blood flow responses to a mixed-nutrient meal in first-degree relatives of adults with type 2 diabetes

Journal article


Roberts-Thomson, Katherine M., Hu, Donghua, Russell, Ryan D., Greenaway, Timothy, Betik, Andrew C., Parker, Lewan, Kaur, Gunveen, Richards, Stephen M., Premilovac, Dino, Wadley, Glenn D. and Keske, Michelle A.. (2022). Impaired postprandial adipose tissue microvascular blood flow responses to a mixed-nutrient meal in first-degree relatives of adults with type 2 diabetes. American Journal of Physiology: Endocrinology and Metabolism. 323(5), pp. E418-E427. https://doi.org/10.1152/ajpendo.00109.2022
AuthorsRoberts-Thomson, Katherine M., Hu, Donghua, Russell, Ryan D., Greenaway, Timothy, Betik, Andrew C., Parker, Lewan, Kaur, Gunveen, Richards, Stephen M., Premilovac, Dino, Wadley, Glenn D. and Keske, Michelle A.
Abstract

Adipose tissue microvascular blood flow (MBF) is stimulated postprandially to augment delivery of nutrients and hormones to adipocytes. Adipose tissue MBF is impaired in type 2 diabetes (T2D). Whether healthy individuals at-risk of T2D show similar impairments is unknown. We aimed to determine whether adipose tissue MBF is impaired in apparently healthy individuals with a family history of T2D. Overnight-fasted individuals with no family history of T2D for two generations (FH−, n = 13), with at least one parent with T2D (FH+, n = 14) and clinically diagnosed T2D (n = 11) underwent a mixed meal challenge (MMC). Metabolic responses [blood glucose, plasma insulin, plasma nonesterified fatty acids (NEFAs), and fat oxidation] were measured before and during the MMC. MBF in truncal subcutaneous adipose tissue was assessed by contrast ultrasound while fasting and 60 min post-MMC. FH+ had normal blood glucoses, increased adiposity, and impaired post-MMC adipose tissue MBF (Δ0.70 ± 0.22 vs. 2.45 ± 0.60 acoustic intensity/s, P = 0.007) and post-MMC adipose tissue insulin resistance (Adipo-IR index; Δ45.5 ± 13.9 vs. 7.8 ± 5.1 mmol/L × pmol/L, P = 0.007) compared with FH−. FH+ and T2D had an impaired ability to suppress fat oxidation post-MMC. Fat oxidation incremental area under the curve (iAUC) (35–55 min post-MMC, iAUC) was higher in FH+ and T2D than in FH− (P = 0.005 and 0.009, respectively). Postprandial MBF was negatively associated with postprandial fat oxidation iAUC (P = 0.01). We conclude that apparently healthy FH+ individuals display blunted postprandial adipose tissue MBF that occurs in parallel with adipose tissue insulin resistance and impaired suppression of fat oxidation, which may help explain their heightened risk for developing T2D.

NEW & NOTEWORTHY Adipose tissue blood flow plays a key role in postprandial nutrient storage. People at-risk of type 2 diabetes have impaired postmeal adipose tissue blood flow. Impaired adipose tissue blood flow is associated with altered fat oxidation. Risk of type 2 diabetes may be elevated by poor adipose tissue blood flow.

Keywordsadipose tissue; fat oxidation; insulin sensitivity; microvasculature; mixed meal challenge
Year2022
JournalAmerican Journal of Physiology: Endocrinology and Metabolism
Journal citation323 (5), pp. E418-E427
PublisherAmerican Physiological Society
ISSN0363-6119
Digital Object Identifier (DOI)https://doi.org/10.1152/ajpendo.00109.2022
PubMed ID35723226
Scopus EID2-s2.0-85140416211
Open accessPublished as green open access
Page rangeE418-E427
FunderRoyal Hobart Hospital Research Foundation
Institute for Physical Activity and Nutrition, Deakin University
National Health and Medical Research Council (NHMRC)
Author's accepted manuscript
License
All rights reserved
File Access Level
Open
Publisher's version
License
All rights reserved
File Access Level
Controlled
Output statusPublished
Publication dates
Online20 Jun 2022
Publication process dates
Accepted12 Jun 2022
Deposited08 Apr 2025
Grant ID1157930
Additional information

© 2022 the American Physiological Society.

Permalink -

https://acuresearchbank.acu.edu.au/item/9195y/impaired-postprandial-adipose-tissue-microvascular-blood-flow-responses-to-a-mixed-nutrient-meal-in-first-degree-relatives-of-adults-with-type-2-diabetes

Download files


Author's accepted manuscript

Restricted files

Publisher's version

  • 19
    total views
  • 6
    total downloads
  • 7
    views this month
  • 0
    downloads this month
These values are for the period from 19th October 2020, when this repository was created.

Export as

Related outputs

Impaired postprandial skeletal muscle vascular responses to a mixed meal challenge in normoglycaemic people with a parent with type 2 diabetes
Russell, Ryan D., Roberts-Thomson, Katherine M., Hu, Donghua, Greenaway, Timothy, Betik, Andrew C., Parker, Lewan, Sharman, James E., Richards, Stephen M., Rattigan, Stephen, Premilovac, Dino, Wadley, Glenn D. and Keske, Michelle A.. (2022). Impaired postprandial skeletal muscle vascular responses to a mixed meal challenge in normoglycaemic people with a parent with type 2 diabetes. Diabetologia. 65(1), pp. 216-225. https://doi.org/10.1007/s00125-021-05572-7
Oral and intravenous glucose administration elicit opposing microvascular blood flow responses in skeletal muscle of healthy people : Role of incretins
Roberts-Thomson, Katherine, Parker, Lewan, Betik, Andrew C., Wadley, Greg D., Della Gatta, Paul A., Marwick, Thomas H. and Keske, Michelle A.. (2022). Oral and intravenous glucose administration elicit opposing microvascular blood flow responses in skeletal muscle of healthy people : Role of incretins. The Journal of Physiology. 600(7), pp. 1667-1681. https://doi.org/10.1113/JP282428
Prior exercise enhances skeletal muscle microvascular blood flow and mitigates microvascular flow impairments induced by a high-glucose mixed meal in healthy young men
Parker, Lewan, Morrison, Dale J., Wadley, Glenn D., Shaw, Christopher S., Betik, Andrew C., Roberts-Thomson, Katherine, Kaur, Gunveen and Keske, Michelle A.. (2021). Prior exercise enhances skeletal muscle microvascular blood flow and mitigates microvascular flow impairments induced by a high-glucose mixed meal in healthy young men. The Journal of Physiology. 599(1), pp. 83-102. https://doi.org/10.1113/JP280651
Liver alanine catabolism promotes skeletal muscle atrophy and hyperglycaemia in type 2 diabetes
Okun, Jürgen G., Rusu, Patricia M., Chan, Andrea Y., Wu, Yuqin, Yap, Yann W., Sharkie, Thomas, Schumacher, Jonas, Schmidt, Kathrin V., Roberts-Thomson, Katherine M., Russell, Ryan D., Zota, Annika, Hille, Susanne, Jungmann, Andreas, Maggi, Ludovico, Lee, Young, Blüher, Matthias, Herzig, Stephan, Keske, Michelle A., Heikenwalder, Mathias, ... Rose, Adam J.. (2021). Liver alanine catabolism promotes skeletal muscle atrophy and hyperglycaemia in type 2 diabetes. Nature Metabolism. 3(3), pp. 394-409. https://doi.org/10.1038/s42255-021-00369-9
Postprandial microvascular blood flow in skeletal muscle : Similarities and disparities to the hyperinsulinaemic-euglycaemic clamp
Roberts-Thomson, Katherine M., Betik, Andrew C., Premilovac, Dino, Rattigan, Stephen, Richards, Stephen M., Ross, Renee M., Russell, Ryan D., Kaur, Gunveen, Parker, Lewan and Keske, Michelle A.. (2020). Postprandial microvascular blood flow in skeletal muscle : Similarities and disparities to the hyperinsulinaemic-euglycaemic clamp. Clinical and Experimental Pharmacology & Physiology. 47(4), pp. 725-737. https://doi.org/10.1111/1440-1681.13237
High-glucose mixed-nutrient meal ingestion impairs skeletal muscle microvascular blood flow in healthy young men
Parker, Lewan, Morrison, Dale J., Betik, Andrew C., Roberts-Thomson, Katherine, Kaur, Gunveen, Wadley, Glenn D., Sha, Christopher S. and Kesk, Michelle A.. (2020). High-glucose mixed-nutrient meal ingestion impairs skeletal muscle microvascular blood flow in healthy young men. American Journal of Physiology: Endocrinology and Metabolism. 318(6), pp. 1014-1021. https://doi.org/10.1152/AJPENDO.00540.2019