Niusha Shafiabady


Contact categoryResearcher
Job titleAssociate Professor
Research institutePeter Faber Business School
Faculty of Law and Business

Research outputs

Applications of Explainable Artificial Intelligence (XAI) and interpretable Artificial Intelligence (AI) in smart buildings and energy savings in buildings : A systematic review
Haghighat, Mohammadreza, MohammadiSavadkoohi, Ehsan and Shafiabady, Niusha. (2025). Applications of Explainable Artificial Intelligence (XAI) and interpretable Artificial Intelligence (AI) in smart buildings and energy savings in buildings : A systematic review. Journal of Building Engineering. 107, p. Article 112542. https://doi.org/10.1016/j.jobe.2025.112542

Journal article

Application of CNN and MLP models for structural health monitoring : A case study on Saigon Bridge
Nguyen, Thanh Q., Vu, Tu B., Shafiabady, Niusha, Nguyen, Thuy T. and Nguyen, Phuoc T.. (2025). Application of CNN and MLP models for structural health monitoring : A case study on Saigon Bridge. Journal of Low Frequency Noise Vibration and Active Control. pp. 1-30. https://doi.org/10.1177/14613484251332711

Journal article

Predicting postgraduate student engagement using artificial intelligence (AI)
Shafiabady, Niusha, Koo, Tebbin (Fung), Din, Fareed Ud, Sattarshetty, Kabir, Yen, Margaret, Alazab, Mamoun and Alsharaydeh, Ethar. (2025). Predicting postgraduate student engagement using artificial intelligence (AI). IEEE Transactions on Artificial Intelligence. pp. 1-12. https://doi.org/10.1109/TAI.2025.3548016

Journal article

Multi-dimensional perceptual recognition of tourist destination using deep learning model and geographic information system
Zhang, Shengtian, Li, Yong, Song, Xiaoxia, Yang, Chenghao, Shafiabady, Niusha and Wu, Robert M. X.. (2025). Multi-dimensional perceptual recognition of tourist destination using deep learning model and geographic information system. PLoS ONE. 20, p. Article e0318846. https://doi.org/10.1371/journal.pone.0318846

Journal article

Resource constraint crop damage classification using depth channel shuffling
Islam, Md Tanvir, Swapnil, Safkat Shahrier, Billal, Md. Masum, Karim, Asif, Shafiabady, Niusha and Hassan, Md. Mehedi. (2025). Resource constraint crop damage classification using depth channel shuffling. Engineering Applications of Artificial Intelligence. 144, p. Article 110117. https://doi.org/10.1016/j.engappai.2025.110117

Journal article

ECgMLP : A novel gated MLP model for enhanced endometrial cancer diagnosis
Sheakh, Md. Alif, Azam, Sami, Tahosin, Mst. Sazia, Karim, Asif, Montaha, Sidratul, Fahim, Kayes Uddin, Shafiabady, Niusha, Jonkman, Mirjam and De Boer, Friso. (2025). ECgMLP : A novel gated MLP model for enhanced endometrial cancer diagnosis. Computer Methods and Programs in Biomedicine Update. 7, p. Article 100181. https://doi.org/10.1016/j.cmpbup.2025.100181

Journal article

Reliable and faithful generative explainers for graph neural networks
Li, Yiqiao, Zhou, Jianlong, Zheng, Boyuan, Shafiabady, Niusha and Chen, Fang. (2024). Reliable and faithful generative explainers for graph neural networks. Machine Learning and Knowledge Extraction. 6(4), pp. 2913-2929. https://doi.org/10.3390/make6040139

Journal article

Automated diagnosis of respiratory diseases from lung ultrasound videos ensuring XAI : An innovative hybrid model approach
Abian, Arefin Ittesafun, Khan Raiaan, Mohaimenul Azam, Karim, Asif, Azam, Sami, Fahad, Nur Mohammad, Shafiabady, Niusha, Yeo, Kheng Cher and De Boer, Friso. (2024). Automated diagnosis of respiratory diseases from lung ultrasound videos ensuring XAI : An innovative hybrid model approach. Frontiers in Computer Science. 6, p. Article 1438126. https://doi.org/10.3389/fcomp.2024.1438126

Journal article

Loss factor analysis in real-time structural health monitoring using a convolutional neural network
Nguyen, Thanh Q., Vu, Tu B., Shafiabady, Niusha, Nguyen, Thuy T. and Nguyen, Phuoc T.. (2025). Loss factor analysis in real-time structural health monitoring using a convolutional neural network. Archive of Applied Mechanics. 95(1), p. Article 15. https://doi.org/10.1007/s00419-024-02712-4

Journal article

Real-time structural health monitoring of bridges using convolutional neural network-based loss factor analysis for enhanced energy dissipation detection
Nguyen, Thanh Q., Vu, Tu B., Shafiabady, Niusha, Nguyen, Thuy T. and Nguyen, Phuoc T.. (2024). Real-time structural health monitoring of bridges using convolutional neural network-based loss factor analysis for enhanced energy dissipation detection. Structures. 70, p. Article 107733. https://doi.org/10.1016/j.istruc.2024.107733

Journal article

Comparative study of ten machine learning algorithms for short-term forecasting in gas warning systems
Wu, Robert M.X., Shafiabady, Niusha, Zhang, Huan, Lu, Haiyan, Gide, Ergun, Liu, Jinrong and Charbonnier, Clement Franck Benoit. (2024). Comparative study of ten machine learning algorithms for short-term forecasting in gas warning systems. Scientific Reports. 14(1), pp. 1-18. https://doi.org/10.1038/s41598-024-67283-4

Journal article

eXplainable Artificial Intelligence (XAI) for improving organisational regility
Shafiabady, Niusha, Hadjinicolaou, Nick, Hettikankanamage, Nadeesha, MohammadiSavadkoohi, Ehsan, Wu, Robert M. X. and Vakilian, James. (2024). eXplainable Artificial Intelligence (XAI) for improving organisational regility. PLoS ONE. 19(4), p. Article e0301429. https://doi.org/10.1371/journal.pone.0301429

Journal article

AI is everywhere – including countless applications you’ve likely never heard of
Shafiabady, Niusha. (2024). AI is everywhere – including countless applications you’ve likely never heard of The Conversation Media Group.

Other

Efficient energy utilization in smart grids an artificial intelligence perspective
Qadir, Zakria, Khan, Yasir Ali, Rana, Muhammad Tausif Afzal, Din, Fareed Ud and Shafiabady, Niusha. (2025). Efficient energy utilization in smart grids an artificial intelligence perspective. In In Bhatia, Tarandeep Kaur, El Hajjami, Salma, Kaushik, Keshav, Diallo, Gayo, Ouaissa, Mariya and Khan, Inam Ullah (Ed.). Ethical artificial intelligence in power electronics pp. 133-147 CRC Press. https://doi.org/10.1201/9781032648323-9

Book chapter

ACGAN-GNNExplainer : Auxiliary conditional generative explainer for graph neural networks
Li, Yiqiao, Zhou, Jianlong, Dong, Yifei, Shafiabady, Niusha and Chen, Fang. (2023). ACGAN-GNNExplainer : Auxiliary conditional generative explainer for graph neural networks. 32nd ACM International Conference on Information and Knowledge Management (CIKM ’23). Birmingham, United Kingdom 21 - 25 Oct 2023 Association for Computing Machinery. pp. 1259-1267 https://doi.org/10.1145/3583780.3614772

Conference paper

V-CarE—A conceptual conceptual design model for providing COVID-19 pandemic awareness : Proposal for a virtual reality design approach to facilitate people with persistent postural-perceptual dizziness
Zaidi, Syed Fawad M., Shafiabady, Niusha, Afifi, Shereen and Beilby, Justin. (2023). V-CarE—A conceptual conceptual design model for providing COVID-19 pandemic awareness : Proposal for a virtual reality design approach to facilitate people with persistent postural-perceptual dizziness. JMIR Research Protocols. 12, p. Article e38369. https://doi.org/10.2196/38369

Journal article

An FSV analysis approach to verify the robustness of the triple-correlation analysis theoretical framework
Wu, Robert M. X., Zhang, Zhongwu, Zhang, Huan, Wang, Yongwen, Shafiabady, Niusha, Yan, Wanjun, Gou, Jinwen, Gide, Ergun and Zhang, Siqing. (2023). An FSV analysis approach to verify the robustness of the triple-correlation analysis theoretical framework. Scientific Reports. 13(1), p. Article 9621. https://doi.org/10.1038/s41598-023-35900-3

Journal article

Identifying presence of cybersickness symptoms using AI-based predictive learning algorithms
Zaidi, Syed Fawad M., Shafiabady, Niusha and Beilby, Justin. (2023). Identifying presence of cybersickness symptoms using AI-based predictive learning algorithms. Virtual Reality. 27(4), pp. 3613-3620. https://doi.org/10.1007/s10055-023-00813-z

Journal article

Using Artificial Intelligence (AI) to predict organizational agility
Shafiabady, Niusha, Hadjinicolaou, Nick, Din, Fareed Ud, Bhandari, Binayak, Wu, Robert M. X. and Vakilian, James. (2023). Using Artificial Intelligence (AI) to predict organizational agility. PLoS ONE. 18(5), p. Article e0283066. https://doi.org/10.1371/journal.pone.0283066

Journal article

Implementation of transformer-based deep learning architecture for the development of surface roughness classifier using sound and cutting force signals
Bhandari, Binayak, Park, Gijun and Shafiabady, Niusha. (2023). Implementation of transformer-based deep learning architecture for the development of surface roughness classifier using sound and cutting force signals. Neural Computing and Applications. 35(18), pp. 13275-13292. https://doi.org/10.1007/s00521-023-08425-z

Journal article

Using multi-focus group method as an effective tool for eliciting business system requirements : Verified by a case study
Wu, Robert M. X., Wang, Yongwen, Shafiabady, Niusha, Zhang, Huan, Yan, Wanjun, Gou, Jinwen, Shi, Yong, Liu, Bao, Gide, Ergun, Kang, Changlong, Zhang, Zhongwu, Shen, Bo, Li, Xiaoquan, Fan, Jianfeng, He, Xiangqian, Soar, Jeffrey, Zhao, Haijun, Sun, Lei, Huo, Wenying and Wang, Ya. (2023). Using multi-focus group method as an effective tool for eliciting business system requirements : Verified by a case study. PLoS ONE. 18(3), p. Article e0281603. https://doi.org/10.1371/journal.pone.0281603

Journal article

Whose job will AI replace? Here’s why a clerk in Ethiopia has more to fear than one in California
Shafiabady, Niusha. (2023). Whose job will AI replace? Here’s why a clerk in Ethiopia has more to fear than one in California The Conversation Media Group.

Other

Evolving Hybrid partial genetic algorithm classification model for cost-effective frailty screening : Investigative study
Oates, John, Shafiabady, Niusha, Ambagtsheer, Rachel, Beilby, Justin, Seiboth, Chris and Dent, Elsa. (2022). Evolving Hybrid partial genetic algorithm classification model for cost-effective frailty screening : Investigative study. JMIR Aging. 5(4), p. Article e38464. https://doi.org/10.2196/38464

Journal article

Persistent postural-perceptual dizziness interventions—an embodied insight on the use virtual reality for technologists
Zaidi, Syed Fawad M., Shafiabady, Niusha and Beilby, Justin. (2022). Persistent postural-perceptual dizziness interventions—an embodied insight on the use virtual reality for technologists. Electronics. 11(1), p. Article 142. https://doi.org/10.3390/electronics11010142

Journal article

ST (Shafiabady-Teshnehlab) optimization algorithm
Shafiabady, Niusha. (2018). ST (Shafiabady-Teshnehlab) optimization algorithm. In In Tan, Ying (Ed.). Swarm intelligence : Volume 2 : Innovation, new algorithms and methods pp. 83-110 The Institution of Engineering and Technology. https://doi.org/10.1049/pbce119g_ch4

Book chapter

The application of artificial intelligence (AI) techniques to identify frailty within a residential aged care administrative data set
Ambagtsheer, R. C., Shafiabady, N., Dent, E., Seiboth, C. and Beilby, J.. (2020). The application of artificial intelligence (AI) techniques to identify frailty within a residential aged care administrative data set. International Journal of Medical Informatics. 136, p. Article 104094. https://doi.org/10.1016/j.ijmedinf.2020.104094

Journal article

Acute effects of methadone on EEG power spectrum and event-related potentials among heroin dependents
Motlagh, Farid, Ibrahim, Fatimah, Rashid, Rusdi, Shafiabady, Niusha, Seghatoleslam, Tahereh and Habil, Hussain. (2018). Acute effects of methadone on EEG power spectrum and event-related potentials among heroin dependents. Psychopharmacology. 235(11), pp. 3273-3288. https://doi.org/10.1007/s00213-018-5035-0

Journal article

  • 430
    total views of outputs
  • 85
    total downloads of outputs
  • 114
    views of outputs this month
  • 9
    downloads of outputs this month
These values are for the period from 19th October 2020, when this repository was created.

Export as