Loading...
Thumbnail Image
Item

The effect of pre-exercise hyperhydration on exercise performance, physiological outcomes and gastrointestinal symptoms : A systematic review

Jardine, William T.
Aisbett, Brad
Kelly, Monica K.
Burke, Louise M.
Ross, Megan L.
Condo, Dominique
Périard, Julien D.
Carr, Amelia J.
Citations
Google Scholar:
Altmetric:
Abstract
Background Fluid loss during prolonged exercise in hot conditions poses thermoregulatory and cardiovascular challenges for athletes that can lead to impaired performance. Pre-exercise hyperhydration using nutritional aids is a strategy that may prevent or delay the adverse effects of dehydration and attenuate the impact of heat stress on exercise performance. Objectives The aim of this systematic review was to examine the current literature to determine the effect of pre-exercise hyperhydration on performance, key physiological responses and gastrointestinal symptoms. Methods English language, full-text articles that compared the intervention with a baseline or placebo condition were included. An electronic search of Medline Complete, SPORTDiscus and Embase were used to identify articles with the final search conducted on 11 October 2022. Studies were assessed using the American Dietetic Association Quality Criteria Checklist. Results Thirty-eight studies involving 403 participants (n = 361 males) were included in this review (n = 22 assessed exercise performance or capacity). Two studies reported an improvement in time-trial performance (range 5.7–11.4%), three studies reported an improvement in total work completed (kJ) (range 4–5%) and five studies reported an increase in exercise capacity (range 14.3–26.2%). During constant work rate exercise, nine studies observed a reduced mean heart rate (range 3–11 beats min−1), and eight studies reported a reduced mean core temperature (range 0.1–0.8 °C). Ten studies reported an increase in plasma volume (range 3.5–12.6%) compared with a control. Gastrointestinal symptoms were reported in 26 studies, with differences in severity potentially associated with factors within the ingestion protocol of each study (e.g. treatment, dose, ingestion rate). Conclusions Pre-exercise hyperhydration may improve exercise capacity during constant work rate exercise due to a reduced heart rate and core temperature, stemming from an acute increase in plasma volume. The combination of different osmotic aids (e.g. glycerol and sodium) may enhance fluid retention and this area should continue to be explored. Future research should utilise valid and reliable methods of assessing gastrointestinal symptoms. Furthermore, studies should investigate the effect of hyperhydration on different exercise modalities whilst implementing a strong level of blinding. Finally, females are vastly underrepresented, and this remains a key area of interest in this area.
Keywords
Date
2023
Type
Journal article
Journal
Sports Medicine
Book
Volume
53
Issue
Page Range
2111-2134
Article Number
ACU Department
Centre for Exercise and Nutrition
Faculty of Health Sciences
Relation URI
Source URL
Event URL
Open Access Status
Published as ‘gold’ (paid) open access
License
CC BY 4.0
File Access
Open
Notes
© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.