Loading...
Spatial and orientational heterogeneity in the statistical sensitivity of skeleton-based analyses of diffusion tensor MR imaging data
Edden, Richard A. ; Jones, Derek Kenton
Edden, Richard A.
Jones, Derek Kenton
Abstract
Group comparisons of indices derived from diffusion tensor imaging are common in the literature. An increasingly popular approach to performing such comparisons is the skeleton-projection based approach where, for example, fractional anisotropy ( FA ) values are projected onto a skeletonized version of the data to minimize differences due to spatial misalignment. In this work, we examine the spatial heterogeneity of the statistical power to detect group differences, and show that there is an intrinsic spatial heterogeneity, with more ‘central’ structures having less variance within a population. Importantly, we also demonstrate a previously unreported feature of skeleton-based analysis methods, that is that the width of the skeleton depends on the relative orientation to the imaging matrix. Due to the way in which the inferential statistics are performed, this means that structures that are obliquely oriented to the imaging matrix are more likely to show significant differences than when aligned with the imaging matrix. This has profound implications for the interpretation of results obtained from such analysis, especially when there are no a priori hypotheses concerning the spatial location of any group differences. For a uniform ( DC ) offset between two groups, the skeleton projection-based approaches will be most likely to reveal a difference in centrally located white matter structures oriented obliquely to the imaging matrix.
Keywords
diffusion tensor imaging, FA, voxel-based analyses, TBSS, bias, nonstationarity, white matter
Date
2011
Type
Journal article
Journal
Journal of Neuroscience Methods
Book
Volume
201
Issue
1
Page Range
213-219
Article Number
ACU Department
Relation URI
Source URL
Event URL
Open Access Status
License
File Access
Controlled
