Loading...
Thumbnail Image
Item

An adaptive physical activity intervention for overweight adults: A randomized controlled trial

Adams, Mark A.
Sallis, James F.
Norman, Gregory J.
Hovell, Melbourne F.
Hekler, Eric B.
Perata, Elyse
Citations
Google Scholar:
Altmetric:
Abstract
Background: Physical activity (PA) interventions typically include components or doses that are static across participants. Adaptive interventions are dynamic; components or doses change in response to short-term variations in participant's performance. Emerging theory and technologies make adaptive goal setting and feedback interventions feasible. Objective: To test an adaptive intervention for PA based on Operant and Behavior Economic principles and a percentile-based algorithm. The adaptive intervention was hypothesized to result in greater increases in steps per day than the static intervention. Methods: Participants (N = 20) were randomized to one of two 6-month treatments: 1) static intervention (SI) or 2) adaptive intervention (AI). Inactive overweight adults (85% women, M = 36.9±9.2 years, 35% non-white) in both groups received a pedometer, email and text message communication, brief health information, and biweekly motivational prompts. The AI group received daily step goals that adjusted up and down based on the percentile-rank algorithm and micro-incentives for goal attainment. This algorithm adjusted goals based on a moving window; an approach that responded to each individual's performance and ensured goals were always challenging but within participants' abilities. The SI group received a static 10,000 steps/day goal with incentives linked to uploading the pedometer's data. Results: A random-effects repeated-measures model accounted for 180 repeated measures and autocorrelation. After adjusting for covariates, the treatment phase showed greater steps/day relative to the baseline phase (p < .001) and a group by study phase interaction was observed (p = .017). The SI group increased by 1,598 steps/day on average between baseline and treatment while the AI group increased by 2,728 steps/day on average between baseline and treatment; a significant between-group difference of 1,130 steps/day (Cohen's d = .74). Conclusions: The adaptive intervention outperformed the static intervention for increasing PA. The adaptive goal and feedback algorithm is a “behavior change technology” that could be incorporated into mHealth technologies and scaled to reach large populations. Trial Registration: ClinicalTrials.gov NCT01793064
Keywords
Date
2013
Type
Journal article
Journal
PLoS ONE
Book
Volume
8
Issue
12
Page Range
1-11
Article Number
ACU Department
Mary MacKillop Institute for Health Research
Faculty of Health Sciences
Relation URI
Source URL
Event URL
Open Access Status
Open access
License
File Access
Open
Notes
© 2013 Adams et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.