Loading...
Thumbnail Image
Item

The asymmetric cell division regulators par3, scribble and PINS/GPSM2 are not essential for erythroid development or enucleation

Wölwer, Christina B.
Gödde, Nathan
Pase, Luke B.
Elsum, Imogen A.
Lim, Krystle Y. B.
Sacirbegovic, Faruk
Walkley, Carl
Ellis, Sharon
Ohno, Shigeo
Matsuzaki, Fumio
... show 2 more
Citations
Google Scholar:
Altmetric:
Abstract
Erythroid enucleation is the process by which the future red blood cell disposes of its nucleus prior to entering the blood stream. This key event during red blood cell development has been likened to an asymmetric cell division (ACD), by which the enucleating erythroblast divides into two very different daughter cells of alternate molecular composition, a nucleated cell that will be removed by associated macrophages, and the reticulocyte that will mature to the definitive erythrocyte. Here we investigated gene expression of members of the Par, Scribble and Pins/Gpsm2 asymmetric cell division complexes in erythroid cells, and functionally tested their role in erythroid enucleation in vivo and ex vivo. Despite their roles in regulating ACD in other contexts, we found that these polarity regulators are not essential for erythroid enucleation, nor for erythroid development in vivo. Together our results put into question a role for cell polarity and asymmetric cell division in erythroid enucleation.
Keywords
Date
2017
Type
Journal article
Journal
PLoS ONE
Book
Volume
12
Issue
1
Page Range
1-14
Article Number
ACU Department
Mary MacKillop Institute for Health Research
Faculty of Health Sciences
Relation URI
Source URL
Event URL
Open Access Status
Open access
License
CC BY 4.0
File Access
Open
Notes